• Title/Summary/Keyword: Multi-sensing System

검색결과 417건 처리시간 0.027초

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF

NON-UNIFORMITY CORRECTION- SYSTEM ANALYSIS FOR MULTI-SPECTRAL CAMERA

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.478-481
    • /
    • 2005
  • The PMU (Payload Management Unit) is the main subsystem for the management, control and power supply of the MSC (Multi-Spectral Camera) Payload operation. It is the most important function for the electro-optical camera system that performs the Non-Uniformity Correction (NUC) function of the raw imagery data, rearranges the data from the CCD (Charge Coupled Device) detector and output it to the Data Compression and Storage Unit (DCSU). The NUC board in PMU performs it. In this paper, the NUC board system is described in terms of the configuration and the function, the efficiency for non-uniformity correction, and the influence of the data compression upon the peculiar feature of the CCD pixel. The NUC board is an image-processing unit within the PMU that receives video data from the CEV (Camera Electronic Unit) boards via a hotlinkand performs non-uniformity corrections upon the pixels according to commands received from the SBC (Single Board Computer) in the PMU. The lossy compression in DCSU needs the NUC in on-orbit condition.

  • PDF

Analysis on the Measurement Results of the Focus Motor Position in MSC (Multi-Spectral Camera) on KOMPSAT - II

  • Heo, H.P.;Kong, J.P.;Kim, Y.S.;Park, J.E.;Chang, Y.J.;Lee, S.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.372-375
    • /
    • 2006
  • The MSC is a high resolution multi-spectral camera system which is mounted on the KOMPSAT-II satellite. The electro-optic camera system has a refocusing mechanism which can be used in-orbit by ground commands. By adjusting locations of some elements in optics, the system can be focused precisely. The focus mechanism in MSC is implemented with stepper motor and potentiometer. By reading the value of the potentiometer, rough position of the motor can be understood. The exact location of the motor can not be acquired because the information from the potentiometer can not be so accurate. However, before and after certain events of the satellite, like a satellite launch, the direction of the movement or order of the magnitude of the movement can be understood. In this paper, the trend analysis of the focus motor position during the ground test phase is introduced. This result can be used as basic information for the focus calibration after launch. By studying the long term trend, deviation from the best focal point can be understood. The positions of the focus motors after launch are also compared.

  • PDF

Lifting을 이용한 고저항고장 검출에 관한 연구 (A Study on High Impedance Fault Detection using Lifting Scheme)

  • 홍대승;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2228-2230
    • /
    • 2002
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the Lifting and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of lifting scheme to the various HIF data. These data were measured in actual 22.9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

웨이브렛 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구 (A Study on High Impedance Fault Detection using Wavelet Transform and Neural -Network)

  • 홍대승;유창완;임화영
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.105-111
    • /
    • 2001
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the wavelet transform and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of discrete wavelet transform to the various HIF data. These data were measured in actual 22-9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

복합위성자료(Topex/Poseidon, Jason-1, ERS, Envisat)를 이용한 한반도 주변해역에서의 해수면 고도 변화와 해수면 온도의 상관성 연구 (Variation of the Sea Surface Height around the Korean Peninsula with the Use of Multi-satellite Data (Topex/Poseidon, Jason-1, ERS, Envisat) and its Association with Sea Surface Temperature)

  • 하경자;정기용;장새롬;김기영
    • 대한원격탐사학회지
    • /
    • 제22권6호
    • /
    • pp.519-531
    • /
    • 2006
  • 한반도 주변해역에서의 해수면 고도는 1993년부터 2005년까지의 기간 동안 연평균 $3.89mm\;yr^{-1}$상승하였으며, 이는 전세계 해수면 상승률의 1.3배에 해당한다. 본 연구에서는 AVISO(Archiving, Validation and Interpretation of Satellite Oceanographic data)에서 제공하는 복합위성자료 (Topex/Poseidon, Jason-1, BRS, Envisat)인 DT-MSLA(Delayed Time-Maps of Sea Level Anomalies)를 이용하여 동해와 황해, 남해, 한국해협에서의 해수면 고도 변화를 연구하였다. 해수면 고도의 평균적인 변화는 증가하는 경향을 보임과 동시에, 여름에는 $4\sim5$년, 겨울에는 3년의 주기성을 가지고 진동하였다. 조화분석을 통하여 해수면 고도와 해수면 온도의 연주기 모드와 반년주기 모드의 진폭과 위상을 나타내었다. 해수면 고도의 연주기 진폭은 한반도 주변해역에서 남동쪽이 높게, 북서쪽이 낮게 나타나는 반면, 해수면 온도는 이와는 반대의 분포를 보였다. 월별 해수면 고도와 해수면 온도의 상관을 구한 결과, $6\sim8$월에 동해와 남해에서 1/2달 시간지연 일 때, 상관계수가 0.7정도로 높게 나타났다. 이러한 결과를 통해 여름철 동해와 남해가 쿠로시오 해류의 영향을 크게 받고 있음을 짐작할 수 있다.

나노바이오기술을 이용한 환경모니터링용 바이오칩 시스템 (Biochip System for Environmental Monitoring using Nanobio Technology)

  • 김영기;민준홍;오병근;최정우
    • KSBB Journal
    • /
    • 제22권6호
    • /
    • pp.378-386
    • /
    • 2007
  • 바이오센싱 디바이스는 본질적으로 생체인식소재와 신호전달장치로 구성된 집적화, 소형화된 분석시스템으로 많은 장점을 가지고 있다. 고민감도, 선택도, 단순성, 다성분 측정능력, 즉시측정능력 뿐 아니라 매우 작고, 고가의 장치가 필요없는 장점이 있다. 바이오센싱 디바이스의 개발을 위해서는 두 가지의 핵심요소기술이 필요하다. 이것은 생체인식소재모듈의 제작 (리셉터 개발 및 고정화기법)과 신호발생기술을 포함한 신호전달장치의 개발이다. 효소, DNA/RNA, 단백질, 세포 등의 다양한 생체인식소재가 바이오센싱 디바이스 제작을 위해 이용되어져 왔고, 신호전달시스템도 전기화학적, 광학적, mass sensitive transducer를 중심으로 매우 활발히 연구되어져 왔다. 본 고에서는 최근 개발된 바이오센싱디바이스에 대해 다루고, 향후 전망에 대해 논하고자 한다.

Analyzing Soybean Growth Patterns in Open-Field Smart Agriculture under Different Irrigation and Cultivation Methods Using Drone-Based Vegetation Indices

  • Kyeong-Soo Jeong;Seung-Hwan Go;Kyeong-Kyu Lee;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.45-56
    • /
    • 2024
  • Faced with aging populations, declining resources, and limited agricultural productivity, rural areas in South Korea require innovative solutions. This study investigated the potential of drone-based vegetation indices (VIs) to analyze soybean growth patterns in open-field smart agriculture in Goesan-gun, Chungbuk Province, South Korea. We monitored multi-seasonal normalized difference vegetation index (NDVI) and the normalized difference red edge (NDRE) data for three soybean lots with different irrigation methods (subsurface drainage, conventional, subsurface drip irrigation) using drone remote sensing. Combining NDVI (photosynthetically active biomass, PAB) and NDRE (chlorophyll) offered a comprehensive analysis of soybean growth, capturing both overall health and stress responses. Our analysis revealed distinct growth patterns for each lot. LotA(subsurface drainage) displayed early vigor and efficient resource utilization (peaking at NDVI 0.971 and NDRE 0.686), likely due to the drainage system. Lot B (conventional cultivation) showed slower growth and potential limitations (peaking at NDVI 0.963 and NDRE 0.681), suggesting resource constraints or stress. Lot C (subsurface drip irrigation) exhibited rapid initial growth but faced later resource limitations(peaking at NDVI 0.970 and NDRE 0.695). By monitoring NDVI and NDRE variations, farmers can gain valuable insights to optimize resource allocation (reducing costs and environmental impact), improve crop yield and quality (maximizing yield potential), and address rural challenges in South Korea. This study demonstrates the promise of drone-based VIs for revitalizing open-field agriculture, boosting farm income, and attracting young talent, ultimately contributing to a more sustainable and prosperous future for rural communities. Further research integrating additional data and investigating physiological mechanisms can lead to even more effective management strategies and a deeper understanding of VI variations for optimized crop performance.