• Title/Summary/Keyword: Multi-scale analysis

Search Result 790, Processing Time 0.025 seconds

New Double-Connected Multi-Step Inverter for SVC (SVC를 위한 새로운 이중접속방식의 멀티스텝 인버터)

  • 최세완;양승욱;김기용
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.460-463
    • /
    • 1999
  • A new multi-step voltage source inverter is proposed in this paper. The proposed scheme is composed of the double-connected 12-step inverter with an auxiliary circuit. The auxiliary circuit includes two voltage dividing capacitors, two switching devices and a low KVA autotransformer. The resultant system is shown to be a 24-step inverter suitable for large scale SVC applications in which the PWM method can not be employed. The design parameters are derived from the analysis of voltages and currents by means of switching functions. The simulation results verify the proposed concept.

  • PDF

Texture Classification Based on Gabor-like Feature (유사 가버 특징에 기반한 텍스쳐 분류)

  • Son, Ji-Hoon;Kim, Sung-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • Efficient texture representation is very important in computer vision fields. The performance of texture classification or/and segmentation can be improved based on efficient texture representation. Gabor filter is a representation method that has long history for texture representation based on multi-scale analysis. Gabor filter shows good performance in texture classification and segmentation but requires much processing time. In this paper, we propose new texture representation method that is also based on multi-scale analysis. The proposed representation can provide similar performance in texture classification but can reduce processing time against Gabor filter. Experimental results show good performance of our method.

Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline (스플라인 이형인발을 위한 중간 다이 단면형상 설계)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit (회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.

The Development and Validation of a Playfulness Scale for Infants & Toddlers (영아 놀이성 척도의 개발 및 타당화 연구)

  • Kim, Yeonsook;Lee, Jonghee
    • Korean Journal of Child Studies
    • /
    • v.33 no.6
    • /
    • pp.85-107
    • /
    • 2012
  • In this study, the Infants & Toddlers' Playfulness Scale(ITPS) was developed and its reliability and validity were examined. The participants in this study consisted of 656 parents whose children were 8 to 36 months old. Five factors were identified from the results of the exploratory factor analysis performed on the 29 items that had been derived by analyzing existing research. The Goodness of Fit Indices(GFIs) of the confirmatory factor analyses, performed on the 1st-order 5-factor model and the 2nd-order one factor model, were both satisfactory. Concurrent validity was established by the high correlations of r = .631~.808(p < .01) between each factor of the ITPS and the total score of the Children's Playfulness Scale(CPS), an existing measure for children's playfulness. The reliability of each factor, as measured by Cronbach's ${\alpha}$, ranged from .773 to .883. Consequently, the ITPS developed in this study can be seen as a reliable and valid scale that can be used by parents to measure the playfulness of their infants and toddlers in a multi-dimensional manner.

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment

  • Pham, Ba-Hung;Davenne, Luc;Brancherie, Delphine;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.303-315
    • /
    • 2010
  • In this paper, we present a new finite Timoshenko beam element with a model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode. A special attention is paid to the influence of the axial force on the bending moment - rotation response, especially for the columns behavior computation.

Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks (IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers

  • Javidan, Mohammad Mahdi;Nasab, Mohammad Seddiq Eskandari;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.645-664
    • /
    • 2021
  • There is a growing need of seismic retrofit of existing non-seismically designed structures in Korea after the 2016 Gyeongju and 2017 Pohang earthquakes, especially school buildings which experienced extensive damage during those two earthquakes. To this end, a steel multi-slit damper (MSD) was developed in this research which can be installed inside of partition walls of school buildings. Full-scale two-story RC frames were tested with and without the proposed dampers. The frames had structural details similar to school buildings constructed in the 1980s in Korea. The details of the experiments were described in detail, and the test results were validated using the analysis model. The developed seismic retrofit strategy was applied to a case study school building structure, and its seismic performance was evaluated before and after retrofit using the MSD. The results show that the developed retrofit strategy can improve the seismic performance of the structure to satisfy a given target performance level.