• 제목/요약/키워드: Multi-rotor

검색결과 240건 처리시간 0.031초

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.

헬리콥터 동체의 진동 예측 (Vibration Prediction of Helicopter Airframe)

  • 윤철용;김도형;강희정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Derivation of Damping-reflected Energy Functions in COI Formulation for Direct Analysis of Transient Stability

  • Park, Byoung-Kon;Kwon, Yong-Jun;Lee, Jong-Gi;Moon, Young-Hyun
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.134-140
    • /
    • 2004
  • This paper presents an improved group of energy functions reflecting generator damping effects for multi-machine power systems by using Center of Inertia (COI) formulation as an extension of the previous work. Since rotor angles at the Stable Equilibrium Point (SEP) of post-fault systems are generally calculated in COI, system transient energy can be found without assumption of infinite or slack bus, which is a crucial drawback of the absolute rotor angle frame approach. The developed energy functions have a structure preserving property with which it is very flexible to incorporate various models of power system components, especially various load and generator models. The proposed damping-reflected energy functions are applied to the Potential Energy Boundary Surface (PEBS) method, one of the direct methods. Numerical simulation of WSCC 9-bus shows that conservativeness of the PEBS method can be considerably reduced.

Nonlinear Excitation Control Design of Generator Based on Multi-objective Feedback

  • Chen, Dengyi;Li, Xiaocong;Liu, Song
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2187-2195
    • /
    • 2018
  • In order to realize the multi-objective control of single-input multi-output nonlinear differential algebraic system (NDAS) and to improve the dynamic characteristics and static accuracy, a design method of nonlinear control with multi-objective feedback (NCMOF) is proposed, the principium of this method to arrange system poles, as well as its nature to coordinate dynamic characteristics and static accuracy of the system are analyzed in detail. Through NCMOF design method, the multi-objective control of the system is transformed into linear space, and then it is effectively controlled under the nonlinear feedback control law, the problem to balance all control objectives caused by less input and more output of the system thus is solved. Applying NCMOF design method to generator excitation system, the nonlinear excitation control law with terminal voltage, active power and rotor speed as objective outputs is designed. Simulation results show that NCMOF can not only improve the dynamic characteristics of generator, but also damp the mechanical oscillation of a generator in transient process. Moreover, NCMOF can control the terminal voltage of the generator to the setting value with no static error under typical disturbances.

Multi-objective Fuzzy-optimization of Crowbar Resistances for the Low-Voltage Ride-through of Doubly Fed Induction Wind Turbine Generation Systems

  • Zhang, Wenjuan;Ma, Haomiao;Zhang, Junli;Chen, Lingling;Qu, Yang
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1119-1130
    • /
    • 2015
  • This study investigates the multi-objective fuzzy optimization of crowbar resistance for the doubly fed induction generator (DFIG) low-voltage ride-through (LVRT). By integrating the crowbar resistance of the crowbar circuit as a decision variable, a multi-objective model for crowbar resistance value optimization has been established to minimize rotor overcurrent and to simultaneously reduce the DFIG reactive power absorbed from the grid during the process of LVRT. A multi-objective genetic algorithm (MOGA) is applied to solve this optimization problem. In the proposed GA, the value of the crowbar resistance is represented by floating-point numbers in the GA population. The MOGA emphasizes the non-dominated solutions and simultaneously maintains diversity in the non-dominated solutions. A fuzzy-set-theory-based is employed to obtain the best solution. The proposed approach has been evaluated on a 3 MW DFIG LVRT. Simulation results show the effectiveness of the proposed approach for solving the crowbar resistance multi-objective optimization problem in the DFIG LVRT.

다자유도 구형 구동 모터의 와전류 손실 저감을 통한 효율 향상 연구 (Improve of Efficiency of Multi D.O.F Spherical Motor Through the Reduction of Eddy Current Loss)

  • 홍경표;김용;장익상;이호준;강동우;원성홍;이주
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.50-56
    • /
    • 2012
  • The Multi D.O.F spherical motor can drive rotating as well as tilting three degree of freedom with one motor. Existing three degree of freedom to drive with three motors that are connected by gears and belts, that will be too large size and big loss at gears and belts. So Reducing system size and improving efficient is using the Multi D.O.F spherical motor in three degree of freedom systems. For this reason, efficiency of Multi D.O.F spherical motor is one of the important performance indiccators. In this paper presented that how to improve the efficiency of the Multi D.O.F spherical motor. The fist of method is using the stator iron core's material with high permeability and resistivity for reducing the eddy current loss. However, it was the disadvatages of motor-making and economic. So author propose the resonable method of reducing the eddy current loss in the stator iron core. That is using the rotor with double-air gap.

다자유도 구형 구동 모터의 와전류 손실 저감을 통한 효율 향상 연구 (Improve of efficiency of Multi D.O.F spherical motor through the reduction of eddy current loss)

  • 홍경표;이원국;이호준;강동우;원성홍;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.947-948
    • /
    • 2011
  • Efficiency of Multi D.O.F spherical motor is one of the important performance indicators. So Through the reduction of eddy current loss on how to improve the efficiency were studied. Stator iron core's material with high permeability and resistivity of material using the eddy current loss was reduced. However, it was the disadvantages of production and economic. For these reasons, prevent eddy current loss of the iron core of multi D.O.F spherical motor as a viable alternative to motor using rotor with double-air gap.

  • PDF

전자기 및 기계적 특성을 고려한 다중 적층형 AFPMSG의 설계 (Design of Multi-stack Axial Flux Permanent Magnet Synchronous Generator Considering Electromagnetic and Mechanical Characteristics)

  • 사이드 쿼반알리샤;유용민;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1043-1044
    • /
    • 2011
  • This paper discusses the electromagnetic and mechanical design considerations to improve the design accuracy and power to mass ratio of multi-stack axial flux permanent magnet synchronous generator (AFPMSG). Design accuracy of multi-stack AFPMSG for direct drive wind turbine application is improved by considering magnetic flux leakages and fringing effect. FEM structural analysis is utilized to increase power to mass ratio of three-stack AFPMSG by reducing the rotor yoke thickness considering magnetic and centrifugal forces and Von Mises stress distribution.

  • PDF

MR유체를 이용한 다방향 제진형 마운트의 응답특성 (Response Property of Multi-directional Mount Using Magneto-Rheological Fluid)

  • 안영공;신동춘;양보석;이일영;김동조
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.517-523
    • /
    • 2003
  • This paper presents response property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid) . The MR mount for the isolation of multi-directional vibrations was constructed in this study. Both the mechanism and shape of the mount are the same as squeeze film dampers for a rotor system. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents In this study.

A Study on Assessment of Composite Couplings for Helicopter Rotor Blades with Multi-cell Sections

  • Jung, Sung-Nam;Park, Il-Ju;Shi, Eui-Sup;Chopra, Inderjit
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.9-18
    • /
    • 2003
  • In this work, a closed-form analysis is performed for the structural response of coupled composite blades with multi-cell sections. The analytical model includes the effects of shell wall thickness, transverse shear, torsion warping and constrained warping. The mixed beam approach based on Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against experimental test data and other analytical results for coupled composite beams and blades with single-cell box-sections and two-cell airfoils. Correlation of the present method with experimental results and detailed finite element results is found to be very good.