• Title/Summary/Keyword: Multi-resonant converter

Search Result 74, Processing Time 0.021 seconds

A Design of ZVS Multi-Resonant Forward Converter for Non-contact Charging (비접촉 충전을 위한 ZVS 다중공진 포워드 컨버터의 설계)

  • Kim, Young-Gil;Na, Hee-Su;Kim, Jin-Woo;Lee, Sung-Paik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1300-1302
    • /
    • 2000
  • In the charge system, a contact type-convenient-charging method is insufficient because of the contact failure around moist environment and troublesome question to put in and pull out. For the solution of this problem, an electromagnetically coupled non-contact charger for the rechargeable cell is proposed using ZVS multi-resonant forward converter. In this paper magnetizing inductance, leakage inductance and coupling coefficient, k are observed. By using the obserbed value, the proposed circuit is simulated by the PSPICE and implemented and the peak voltage of switch and output power are measured.

  • PDF

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

Zero-Current Switching LLC Resonant Post-Regulator for Independent Multi-Output (독립된 다중출력을 위한 영전류 스위칭 LLC 공진형 Post-Regulator)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • A new zero-current switching LLC resonant post-regulator for multi-output power system is proposed in this paper. A conventional LLC resonant converter employs extra non-isolated DC/DC converters to obtain tight-regulated multi-slave output voltages. Therefore, it has several serious problems such as a poor efficiency and high cost of production. The proposed post-regulator features low voltage and current stress across the output rectifier diodes and power switches. Moreover, the proposed post-regulator requires only one power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure and lower cost. Especially, since the proposed post-regulator can ensure the ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a proposed zero-current LLC resonant post-regulator are presented.

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

Model Test of Dual-Buoy Wave Energy Converter using Multi-resonance (다중 공진을 이용한 이중 부이 파력발전장치의 모형실험)

  • Kim, Jeong-Rok;Hyeon, Jong-Wu;Koh, Hyeok-Jun;Kweon, Hyuck-Min;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • In this study, we proposed a new type of dual-buoy wave energy converter (WEC) exploiting multi-resonance and analyzed the experimental results from a model test in a 2-D wave flume. A dual-buoy WEC using multi-resonance has two advantages: high efficiency at the resonant frequencies and the potential to extend the frequency range available to extract wave power from the WEC. The suggested WEC was composed of an outer buoy and an inner buoy sliding vertically inside the outer buoy. As the power take-off device, a linear electric generator (LEG) consisting of permanent magnets and coils fixed at each buoy was adopted. Electricity was produced by the relative heave motion between the two buoys. To search for the optimal shape of a dual-buoy WEC, we conducted experiments on the heave motion of a two-body system in regular waves without an LEG installed. Model tests with six combinations of experimental models were conducted in order to find the motion characteristics of a dual-buoy WEC. It was found that model 2, which included a ring-shaped appendage to move the resonant frequency of the outer buoy toward a high value, showed a higher relative heave response amplitude operator (RAO) curve than model 1. In addition, the double-peak shape of the heave RAO curve shown for model 2 indicated the extension of the frequency range for extracting wave power in irregular waves.

Design of an Electrical Pulse Generator for the Multi-parameter Neuromuscular Stimulation System (다변수 근신경 자극 시스템을 위한 전기자극 펄스 발생기의 설계)

  • Ko, K.R.;Kim, H.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.165-166
    • /
    • 1998
  • A multi-parameter neuro muscular electrical simulator (NMES) system was developed to be used to find the optimal parameter condition in obtaining maximum muscle power and minimal fatigue. Since the performance of NMES is mainly determined by the characteristic of its output-stage circuit, we implemented 3 different circuits and compared output characteristics of them. Three amplifier circuits are; 1) a resonant switching converter, 2) a linear amplifier with a transformer, and 3) a step-up DC/DC converter with a high-voltage linear amplifier. Experimental results showed that the step up DC/DC converter with a high-voltage linear amplifier has the best performance.

  • PDF

Mode analysis for the AT Forward MRC (AT 포워드 다중공진형 컨버터의 동작 모드 해석)

  • Kim, Sang-Il;Kim, Hee-Jun;Kim, Chang-Sun;Oh, Won-Seak
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2691-2694
    • /
    • 1999
  • The multi-resonant converter(MRC) can reduce the switching losses exiting in a converter, so it is capable of operating at a high frequency. Such a few MHz high frequency application provides a high power density [$W/inch^{3}$]. But the high voltage stress across a switch of the resonant circuit is about 4$\sim$5 times the input voltage, it causes increasing of the conduction loss in MRC. In this paper, the mode analysis for the suggested AT Forward MRC with low voltage stress is discussed. The operational modes of the AT Forward MRC are divided to 8 equivalent modes according to the two switching sequences, Each mode is analyzed over all of the paper.

  • PDF

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

AT forward MRC with a low voltage stress (저전압 스트레스를 갖는 AT 포워드 다중 공진형 컨버터)

  • Hwang, Chi-Meon;Kim, Hee-Jun;Kim, Chang-Sun;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2042-2044
    • /
    • 1998
  • In this paper, we proposed the alternated forward multi-resonant converter. It can reduce the voltage stress due to the operation of two multi resonant switches and also provides a high frequency applications. The proposed circuit is verified through the PSpice simulation and the 50W experimental set with 2MHz maximum frequency. The measured voltage stress is up to 170V of 2.9 times the input voltage and the efficiency is about 81.66% at low line.

  • PDF

A constant frequency controlled forward AVS-MRC using a saturable inductor (포화인덕터를 이용한 일정주파수제어 포워드 공진형 컨버터)

  • 안태영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.145-153
    • /
    • 1997
  • This paper proposes a constant frequency controlled forward zero voltage switching multi resonant converter (ZVS-MRC) which operates with a fixed duty ratio. The proposed converter is obtained from a conventional forward ZVS-MRC by placing a saturable core in parallel with the secondary side of the transformer. Experimental results are presented for a proposed converter which operates at 1.5MHz switching frequency with an output power of 50W (5V/10A). The merits of the proposed converter include ; 1) reduced voltage stress to the main switch compared with the conventional counterpart, 2) ease on designing the magnetic components including EMI and output filter, and 3) simple control scheme.

  • PDF