• Title/Summary/Keyword: Multi-resolution analysis

Search Result 412, Processing Time 0.024 seconds

Holocene Environments of the Buyeo Area Choongnam Province: Reconstructed from Carbon Isotopic and Magnetic Evidences from Alluvial Sequences (충남 부여지역의 홀로세 기후변화 -탄소동위원소분석과 대자율분석을 이용하여-)

  • Park, Kyeong;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.4
    • /
    • pp.396-412
    • /
    • 2011
  • Multi-proxy analysis was used to produce a high-resolution paleoclimatic record from a thick section of the Holocene alluvial fan deposit in Gatap-ri, Buyeo. According to ${\delta}^{13}C$ analyses, five minor climate fluctuations can be determined. From the stage I to stage VI, climate changes are as follows: cool-dry, warm-humid, cool-dry, warm humid, drier than stage IV, and finally more humid environment than stage V. According to magnetic susceptibility records, four different stages can be identified, among which stage ii shows the highest susceptibility. Stage-i deposit is derived from sediments of back marsh-type wetland. Stage-ii and stage-iii deposits, however, show higher magnetic susceptibility because magnetite-enriched soil from weathered upland was transported to the area to form an alluvial fan deposits. Stage-iv deposit is comparable to the modern plow horizon.

Analysis of Radiation Field and Block Pattern for Optimal Size in Multileaf Collimator (치료조사면 및 블록 유형분석을 통한 적정 다엽 콜리메이터 규모에 관한 연구)

  • Ahn, Seoung-Do;Yang, Kwang-Mo;Yi, Byong-Yong;Choi, Eun-Kyong;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.253-262
    • /
    • 1994
  • The patterns of the conventional radiation treatment fields and their shielding blocks are analysed to determine the optimal dimension of the MultiLeaf Collimator (MLC) which is considered as an essential tool for conformal therapy. Total 1109 radiation fields from 303 patients (203 from Asan Medical center, 50 from Baek Hosp and 50 from Hanyang Univ. Hosp.) were analysed for this study. Weighted case selection treatment site (from The Korean Society of Therapeutic Radiology 1993). Ninety one percent of total fields have shielding blocks. Y axis is defined as leaf movement direction and it is assumed that MLC is installed on the cranial-caudal direction. The length of X axis were distributed from 4cm to 40cm (less than 21cm for $95\%$ of cases), and Y axis from 5cm to 38cm (less than 22cm for $95\%$ of cases). The shielding blocks extended to less than 6cm from center of the field for $95\%$ of the cases. Start length for ninety five percent of block is less than 10cm for X axis and 11cm for Y axis. Seventy six percent of shielding blocks could be placed by either X or Y axis direction, $7.9\%$ only by Y axis, $5.1\%$ only by X axis and It is reasonable to install MLC for Y direction. Ninety five percent of patients can be treated with coplanar rotation therapy without changing the collimator angle. Eleven percent of cases of cases were impossible to replace with MLC. Futher study of shielding technique is needed for $11\%$ impossible cases. The treatment field dimension of MLC should be larger than $21cm{\times}22cm$. The MLC should be designed as a pair of 21 leaves with 1cm wide for an acceptable resolution and 17cm long to enable the leaf to overtravel at least 6cm from the treatment field center.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data: Application of RadCalNet Baotou (BTCN) Data (다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증: RadCalNet Baotou(BTCN) 자료 적용 사례)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1509-1521
    • /
    • 2020
  • Experiments for validation of surface reflectance produced by Korea Multi-Purpose Satellite (KOMPSAT-3A) were conducted using Chinese Baotou (BTCN) data among four sites of the Radical Calibration Network (RadCalNet), a portal that provides spectrophotometric reflectance measurements. The atmosphere reflectance and surface reflectance products were generated using an extension program of an open-source Orfeo ToolBox (OTB), which was redesigned and implemented to extract those reflectance products in batches. Three image data sets of 2016, 2017, and 2018 were taken into account of the two sensor model variability, ver. 1.4 released in 2017 and ver. 1.5 in 2019, such as gain and offset applied to the absolute atmospheric correction. The results of applying these sensor model variables showed that the reflectance products by ver. 1.4 were relatively well-matched with RadCalNet BTCN data, compared to ones by ver. 1.5. On the other hand, the reflectance products obtained from the Landsat-8 by the USGS LaSRC algorithm and Sentinel-2B images using the SNAP Sen2Cor program were used to quantitatively verify the differences in those of KOMPSAT-3A. Based on the RadCalNet BTCN data, the differences between the surface reflectance of KOMPSAT-3A image were shown to be highly consistent with B band as -0.031 to 0.034, G band as -0.001 to 0.055, R band as -0.072 to 0.037, and NIR band as -0.060 to 0.022. The surface reflectance of KOMPSAT-3A also indicated the accuracy level for further applications, compared to those of Landsat-8 and Sentinel-2B images. The results of this study are meaningful in confirming the applicability of Analysis Ready Data (ARD) to the surface reflectance on high-resolution satellites.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data (Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정)

  • KIM, Kyoung-Seop;CHOUNG, Yun-Jae;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2022
  • Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance - (드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 -)

  • Cho, Young-Il;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1607-1622
    • /
    • 2022
  • The purpose of this study is to determine the actual performance of cool roof in preventing absorbed solar radiation. The spatial correlation between surface temperature and absorbed solar radiation is the method by which the performance of a cool roof can be understood and evaluated. The research area of this study is the vicinity of Jangyu Mugye-dong, Gimhae-si, Gyeongsangnam-do, where an actual cool roof is applied. FLIR Vue Pro R thermal infrared sensor, Micasense Red-Edge multi-spectral sensor and DJI H20T visible spectral sensor was used for aerial photography, with attached to the drone DJI Matrice 300 RTK. To perform the spatial correlation analysis, thermal infrared orthomosaics, absorbed solar radiation distribution maps were constructed, and land cover features of roof were extracted based on the drone aerial photographs. The temporal scope of this research ranged over 9 points of time at intervals of about 1 hour and 30 minutes from 7:15 to 19:15 on July 27, 2021. The correlation coefficient values of 0.550 for the normal roof and 0.387 for the cool roof were obtained on a daily average basis. However, at 11:30 and 13:00, when the Solar altitude was high on the date of analysis, the difference in correlation coefficient values between the normal roof and the cool roof was 0.022, 0.024, showing similar correlations. In other time series, the values of the correlation coefficient of the normal roof are about 0.1 higher than that of the cool roof. This study assessed and evaluated the potential of an actual cool roof to prevent solar radiation heating a rooftop through correlation comparison with a normal roof, which serves as a control group, by using high-resolution drone images. The results of this research can be used as reference data when local governments or communities seek to adopt strategies to eliminate the phenomenon of urban heat islands.

Analysis of PM2.5 Impact and Human Exposure from Worst-Case of Mt. Baekdu Volcanic Eruption (백두산 분화 Worst-case로 인한 우리나라 초미세먼지(PM2.5) 영향분석 및 노출평가)

  • Park, Jae Eun;Kim, Hyerim;Sunwoo, Young
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1267-1276
    • /
    • 2020
  • To quantitatively predict the impacts of large-scale volcanic eruptions of Mt. Baekdu on air quality and damage around the Korean Peninsula, a three-dimensional chemistry-transport modeling system (Weather Research & Forecasting - Sparse Matrix Operation Kernel Emission - Comunity Multi-scale Air Quality) was adopted. A worst-case meteorology scenario was selected to estimate the direct impact on Korea. This study applied the typical worst-case scenarios that are likely to cause significant damage to Korea among worst-case volcanic eruptions of Mt. Baekdu in the past decade (2005~2014) and assumed a massive VEI 4 volcanic eruption on May 16, 2012, to analyze the concentration of PM2.5 caused by the volcanic eruption. The effects of air quality in each region-cities, counties, boroughs-were estimated, and vulnerable areas were derived by conducting an exposure assessment reflecting vulnerable groups. Moreover, the effects of cities, counties, and boroughs were analyzed with a high-resolution scale (9 km × 9 km) to derive vulnerable areas within the regions. As a result of analyzing the typical worst-case volcanic eruptions of Mt. Baekdu, a discrepancy was shown in areas between high PM2.5 concentration, high population density, and where vulnerable groups are concentrated. From the result, PM2.5 peak concentration was about 24,547 ㎍/㎥, which is estimated to be a more serious situation than the eruption of Mt. St. Helensin 1980, which is known for 540 million tons of volcanic ash. Paju, Gimpo, Goyang, Ganghwa, Sancheong, Hadong showed to have a high PM2.5 concentration. Paju appeared to be the most vulnerable area from the exposure assessment. While areas estimated with a high concentration of air pollutants are important, it is also necessary to develop plans and measures considering densely populated areas or areas with high concentrations of susceptible population or vulnerable groups. Also, establishing measures for each vulnerable area by selecting high concentration areas within cities, counties, and boroughs rather than establishing uniform measures for all regions is needed. This study will provide the foundation for developing the standards for disaster declaration and preemptive response systems for volcanic eruptions.