• 제목/요약/키워드: Multi-physics Simulation

검색결과 130건 처리시간 0.024초

물리 엔진에 관한 고찰 : 실시간 물리 기술을 중심으로 (A study on game physics engine focused on real time physics)

  • 하유종;박경주
    • 한국게임학회 논문지
    • /
    • 제9권5호
    • /
    • pp.43-52
    • /
    • 2009
  • 본 연구는 게임 물리 엔진을 실시간 물리 기술의 관점으로 고찰한다. 실시간 물리 기술이란 물리 시뮬레이션 기술을 게임에 적용하기 위해서 간략화 하는 기술을 말한다. 조사 대상으로 상용 물리 엔진인 Havok Physics SDK와 NVIDIA PhysX SDK를 선택하였고, 오픈 소스기반 물리 엔진인 ODE와 Bullet을 선택하였다. 그 결과 물리 엔진은 강체 역학, 변형체 시뮬레이션, 유체 시뮬레이션을 구현하고 있었고, 실시간 시뮬레이션을 위해서 수식의 간략화, 충돌 처리의 효율성 재고 등 소프트웨어 측면의 기술과 멀티 코어 CPU의 이용, PPU, GPU 활용 등 병렬처리 하드웨어 기술을 사용하고 있었다.

  • PDF

다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션 (Material Design Using Multi-physics Simulation: Theory and Methodology)

  • 현상일
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

자성유체에 잠긴 비자성체 부상현상의 다중물리수치해석 및 실험 (A Multi-physics Simulation and Measurement for Buoyancy of Nonmagnetic Solid Object Submerged in Magnetic Liquid)

  • 최홍순
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.43-48
    • /
    • 2013
  • In this paper, magnetic buoyancy force on nonmagnetic solid object submerged in magnetic liquid was simulated and measured. For the evaluation of the force, a multi-physics approach of hydrostatic equilibrium considering magnetic body force as well as gravity is presented. The magnetic body force should be regarded as an additional forcing term in the momentum equation of hydrodynamics. It is also shown that the virtual air-gap based Kelvin's force formula is a useful method for the calculation of force distribution in the magnetic liquid. The experimental result which was performed by a load-cell measurement system agreed quantitatively well with the numerical one.

Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle

  • Tayeb, Tayeb Si;Zidour, Mohamed;Bensattalah, Tayeb;Heireche, Houari;Benahmed, Abdelillah;Bedia, E.A. Adda
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.135-148
    • /
    • 2020
  • The incorporation of carbon nanotubes in a polymer matrix makes it possible to obtain nanocomposite materials with exceptional properties. It's in this scientific background that this work was based. There are several theories that deal with the behavior of plates, in this research based on the Mindlin-Reissner theory that takes into account the transversal shear effect, for analysis of the critical buckling load of a reinforced polymer plate with parabolic distribution of carbon nanotubes. The equations of the model are derived and the critical loads of linear and parabolic distribution of carbon nanotubes are obtained. With different disposition of nanotubes of carbon in the polymer matrix, the effects of different parameters such as the volume fractions, the plate geometric ratios and the number of modes on the critical load buckling are analysed and discussed. The results show that the critical buckling load of parabolic distribution is larger than the linear distribution. This variation is attributed to the concentration of reinforcement (CNTs) at the top and bottom faces for the X-CNT type which make the plate more rigid against buckling.

Fuzzy-PID controller for motion control of CFETR multi-functional maintenance platform

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Wu, Huapeng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2251-2260
    • /
    • 2021
  • The motion control of the divertor maintenance system of the China Fusion Engineering Test Reactor (CFETR) was studied in this paper, in which CFETR Multi-Functional Maintenance Platform (MFMP) was simplified as a parallel robot for the convenience of theoretical analysis. In order to design the motion controller of parallel robot, the kinematics analysis of parallel robot was carried out. After that, the dynamic modeling of the hydraulic system was built. As the large variation of heavy payload on MFMP and highly nonlinearity of the system, A Fuzzy-PID controller was built for self-tuning PID controller parameters by using Fuzzy system to achieve better performance. In order to test the feasibility of the Fuzzy-PID controller, the simulation model of the system was built in Simulink. The results have showed that Fuzzy-PID controller can significantly reduce the angular error of the moving platform and provide the stable motion for transferring the divertor.

화약내 Gap을 통한 폭발력 제어 가능성에 대한 수치해석적 연구 (Controlling of detonation strength through inserted gaps in multi-material shock physics simulation)

  • 이진욱;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.275-278
    • /
    • 2012
  • We investigate the interaction between the propagation of detonation and inserted gaps in the high explosive. The Eulerian-based multi-material simulation code validated through comparison with experimental results was used. A series of gap materials is used to understand the detonation propagation characteristic in the presence of multiple gaps.

  • PDF

A Systems Engineering Approach to Multi-Physics Analysis of a CEA Withdrawal Accident

  • Jan, Hruskovic;Kajetan Andrzej, Rey;Aya, Diab
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.58-74
    • /
    • 2022
  • Deterministic accident analysis plays a central role in the nuclear power plant (NPP) safety evaluation and licensing process. Traditionally the conservative approach opted for the point kinetics model, expressing the reactor core parameters in the form of reactivity and power tables. However, with the current advances in computational power, high fidelity multi-physics simulations using real-time code coupling, can provide more detailed core behavior and hence more realistic plant's response. This is particularly relevant for transients where the core is undergoing reactivity anomalies and uneven power distributions with strong feedback mechanisms, such as reactivity initiated accidents (RIAs). This work addresses a RIA, specifically a control element assembly (CEA) withdrawal at power, using the multi-physics analysis tool RELAP5/MOD 3.4/3DKIN. The thermal-hydraulics (TH) code, RELAP5, is internally coupled with the nodal kinetics (NK) code, 3DKIN, and both codes exchange relevant data to model the nuclear power plant (NPP) response as the CEA is withdrawn from the core. The coupled model is more representative of the complex interactions between the thermal-hydraulics and neutronics; therefore the results obtained using a multi-physics simulation provide a larger safety margin and hence more operational flexibility compared to those of the point kinetics model reported in the safety analysis report for APR1400. The systems engineering approach is used to guide the development of the work ensuring a systematic and more efficient execution.

BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations

  • Park, Ho Jin;Kim, Seong Jin;Kwon, Hyuk;Cho, Jin Young
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1896-1906
    • /
    • 2020
  • The BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulation) benchmark calculations were performed by DeCART stand-alone and DeCART/MATRA multi-physics coupled code system to verify their accuracy. The solutions of DeCART stand-alone calculations for the control rod bank worth, detector signal, isothermal temperature coefficient, and critical boron concentration agreed very well with the measurements. The root-mean-square errors of the boron letdown curves for two-cycles were less than about 20 ppm, while the individual and total control rod bank worth agreed well within 7.3% and 2.4%, respectively. For the BEAVRS benchmark calculations at the beginning of burnup, the difference between DeCART simplified thermal-hydraulic stand-alone and DeCART/MATRA coupled calculations were not significantly large. Therefore, it is concluded that both the DeCART stand-alone code and the DeCART/MATRA multi-physics coupled code system have the capabilities to generate high fidelity transport solutions at core follow calculations.

Comparison of Numerical Analysis Methods of APro for the Total System Performance Assessment of a Geological Disposal System

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.165-173
    • /
    • 2023
  • Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRES-SSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.