• 제목/요약/키워드: Multi-phases

검색결과 248건 처리시간 0.025초

Multi-phase 인버터 특성해석 (Characteristic Analysis of Multi-Phase Inverter)

  • 오진석;조관준;곽준호;진선호;유병랑;임명규;이홍찬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1170-1175
    • /
    • 2005
  • This paper is analyzed the characteristic of multi-phase inverter for the electric propulsion system. Two BLDC motors with 3 and 7 phases are designed with these features in order to simulate the effect of increasing the number of phases. From the simulation results, the 7-phase given better performance in terms of torque pulsation. Also, the torque pulsation can be reduced further by increasing the number of phases.

  • PDF

안전조치 포함 다단계 임무 수행을 위한 선택적 스퀴브 도화 및 점검 회로 설계 (Selective Squib Activation and Check Circuit Design for Safeguarded Multi-Phase Missions)

  • 이헌철;권용성
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.684-696
    • /
    • 2018
  • The mission in missile systems can be conducted with multiple phases according to the characteristics of the systems and the targets. The safeguarded multi-phase mission includes a safeguarded phase before launch for considering the safety of operators in unexpected squib activation. However, the safeguard function should be disabled after launch to complete the mission. Therefore, the squib system needs to be selectively activated according to the phases. This paper presents a selective squib activation and check circuit design for safeguarded multi-phase missions in missile systems. The presented circuit design was implemented with various electronic components including a field-programmable gate array(FPGA). Its functions and performance were validated by both many ground tests and several flight tests.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

다중방향 릴레이 시스템을 위한 자가간섭 소거 보조 릴레이 빔형성 기법 (Self-Interference Cancellation-Aided Relay Beamforming for Multi-Way Relaying Systems)

  • 레덕안;박진배;조용옥;정민아;이성로;김윤희
    • 한국통신학회논문지
    • /
    • 제38C권4호
    • /
    • pp.378-386
    • /
    • 2013
  • 본 논문은 N 통신노드들이 다중 안테나 비재생 릴레이국의 협력으로 서로 데이터를 교환하는 다중방향 릴레이 시스템을 제안한다. 기존의 단방향 릴레이를 적용한 다중방향 통신의 경우 2N 전송 단계가 필요하나 제안하는 다중방향 릴레이 시스템은 단일 다중접속 단계와 N-1 방송 단계로 구성된 총 N 전송 단계만 필요로 한다. 특히 효율적인 방송 단계 전송을 위해 통신노드들을 쌍을 짓고 쌍이 아닌 통신노드들에게 간섭을 주지 않는 새로운 릴레이 빔형성 행렬과 통신노드 자가간섭 소거기를 제안한다. 평균 합 전송률로 성능을 평가한 결과, 제안 기법이 기존 기법의 성능을 향상시키며 그 이득은 릴레이 노드 안테나 수와 통신노드 수가 비슷할 때 더 커짐을 볼 수 있다. 이러한 제안 기법은 여러 선박간의 정보를 공유할 필요가 있는 해양 통신 환경에서 통신 거리를 확장하는 데 효과적으로 적용할 수 있을 것으로 기대된다.

나선형 냉각 코일이 설치된 교반기에서 임펠러 배치가 교반과 열전달에 미치는 영향 (THE EFFECTS OF IMPELLER CONFIGURATION ON MIXING AND HEAT TRANSFER IN A STIRRED TANK WITH A HELICAL COOLING COIL)

  • 김인선;송현섭;한상필
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.55-59
    • /
    • 2005
  • CFD analysis has been conducted to find the two stage impeller configuration which is the most suitable for a stirred tank with an internal helical cooling coil and a cooling jacket, which is frequently used in chemical industries for highly exothermic reactions ranged from low to medium viscosity. Two typical types of impellers are considered; pitched paddle impellers and Rushton turbine impellers. Interestingly, pitched paddle impellers show a good mixing performance for multi-species, whereas Rushton turbine impellers achieve a good mixing performance for multi-phases. Besides the type of an impeller, the location of an impeller is another important factor to be considered in order to accomplish an effective mixing. The best set of types and locations of two impellers is recommended based on the coefficient of variation(CoV) value and the heat removal capability obtained from CFD results. The former is a measure to quantify the degree of mixing.

  • PDF

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구 (A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery)

  • 이호;장국진;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제8권4호
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF

Experimental Studies on Submerged Arc Welding Process

  • Kiran, Degala Ventaka;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.1-10
    • /
    • 2014
  • The efficient application of any welding process depends on the understanding of associated process parameters influence on the weld quality. The weld quality includes the weld bead dimensions, temperature distribution, metallurgical phases and the mechanical properties. A detailed review on the experimental and numerical approaches to understand the parametric influence of a single wire submerged arc welding (SAW) and multi-wire SAW processes on the final weld quality is reported in two parts. The first part deals with the experimental approaches which explain the parametric influence on the weld bead dimensions, metallurgical phases and the mechanical properties of the SAW weldment. Furthermore, the studies related to statistical modeling of the present welding process are also discussed. The second part deals with the numerical approaches which focus on the conduction based, and heat transfer and fluid flow analysis based studies in the present welding process. The present paper is the first part.