• Title/Summary/Keyword: Multi-pass

Search Result 492, Processing Time 0.036 seconds

A Study on the Fine Wire Drawing Process Design to Improve the Productivity (생산성 향상을 위한 세선 인발공정설계에 관한 연구)

  • Lee, S.K.;Kim, B.M.;Kim, M.A.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • The control of wire temperature is very important in the fine wire drawing process. The wire speed should be increased, and the wire temperature should be dropped as much as possible. Up to now, the process design of wire drawing process depends on the experiences of experts. In this study, a wire drawing process design method was proposed to increase the productivity. The proposed method of this study includes the pass schedule and the design of a multi pass wire drawing machine. A pass schedule was performed based on the calculation of the wire temperature. Also, a new multi pass wire drawing machine was manufactured to apply the designed pass schedule. Through the wire drawing experiment, the effectiveness of the proposed process design method was evaluated. The final drawing speed was increased from 1,100m/min to 2,000m/min without deterioration of final drawn wire.

A Study on Cross Sectional Shape Design of Intermediate Pass in the Multi-Stage Shape Drawing (다단 이형인발공정의 중간패스 단면형상 설계에 관한 연구)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, S.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.283-289
    • /
    • 2009
  • The multi-stage shape drawing is used to obtain long shaped products with high levels of dimensional accuracy and quality. It is important to design the cross sectional shapes of the intermediate passes to meet the required dimensional accuracy of the final product in the multi-stage shape drawing. Until now, the cross sectional shapes of the intermediate passes have been designed by the experiences. It is still remained unsolved problem to design the cross sectional shapes of intermediate pass drawing dies in the multi-pass shape drawing. In this study, a new technique is proposed to design the cross sectional shapes of intermediate passes. The proposed method is applied to a multi-stage shape drawing for a LM-guide which is one of the representative shape drawing products. In order to verify the effectiveness of the proposed method, FE-simulation and experiments have been carried out. The dimensional accuracy of the proposed method is compared with that of the conventional shape drawing process designed by the industrial engineers.

Optimization of Process Variables of Shape Drawing for Steering Spline Shaft (조향장치용 스플라인 샤프트 이형인발 공정변수 최적화)

  • Lee, S.K.;Kim, S.M.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • In the multi-pass shape drawing process, the appropriate process design is very important to produce sound products. The reduction ratio, die angle, and the intermediate die shape are very important process variable of the multi-pass shape drawing. The aim of this study is the determination of the reduction ratio, die angle, and the intermediate die shape of the 2 pass shape drawing process for producing steering spline shaft. In this study, FE analysis, Taguchi method, and ANN(artificial neural network) were applied to determine the appropriate reduction ratio, die angle, and intermediate die shape. After the determination of the process variables, FE analysis and drawing experiment were performed to evaluate the effectiveness of the determined process variables. The dimensional accuracy of the final drawn spline shaft was evaluated by using 3D surface profiler and 3D laser digitizing system.

Experimental Study of the Superheat and Control of the Refrigerant Flow-Rate in the Evaporator of a Multi-type Air-Conditioning System (멀티형 공조시스템의 증발기 과열도에 관한 실험적 연구 및 냉매유량 제어)

  • 김태섭;홍금식;손현철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.221-221
    • /
    • 2000
  • The heat exchange part in a modern multi-type air-conditioning system employs multiple-pass heat exchangers. The heat-transfer performance of an each pass in such an exchanger depends strongly on the length of the two-phase region and the mass flow of the refrigerant. The total length and diameters of the pipes, the exit conditions, and the arrangement of each pass as well as the geometrical shape of the distributor at the branching sections are considered to be major factors affecting the heat-transfer performance. The refrigerant commonly used in these systems is HCFC-22. The two objectives of this paper are to investigate the characteristics of the refrigerant flow rate and the superheat in the evaporator of a multi-type air-conditioning system for a single or simultaneous operating conditions and to control the superheat and the refrigerant flow rate of the evaporator.

  • PDF

Flow Distribution Characteristics in a Multi-Pass Heat Exchanger (다패스 열교환기에서의 유량분배 특성)

  • Kim, Min-Soo;Kang, Soo-Jin;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.737-742
    • /
    • 2006
  • This paper numerically investigates to evaluate the performance according to the number of passes and the inlet/outlet diameter in a multi-pass multi-branch heat exchanger. A JF factor is used as an evaluation characteristic value to consider the heat transfer rate and the pressure drop simultaneously. It estimates the performance according to the number of passes and the inlet diameter of the reference heat exchanger. When the ratio of the inlet diameter to the header height is about 0.5, the optimum number of passes is selected along with the inlet diameter.

  • PDF

Effect of simulated double cycle welding on HAZ microstructure for HSLA steels

  • El-Kashif, Emad F.;Morsy, Morsy A.
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • High Strength low alloy steels containing various levels of C, Nb and Mn were used and for each of which, a simulated double thermal cycle was applied with the same first peak temperature and different second peak temperatures to produce HAZ microstructure corresponding to multi-pass weld. Effect of double cycle second temperature on the microstructure was observed and compared with single cycle results obtained from previous works, it was found that the percentage of martensite austenite constituent (MA) increases by Nb addition for all steels with the same Mn content and the increase in Mn content at the same Nb content shows an increase in MA area fraction as well. MA area fraction obtained for the double cycle is larger than that obtained for the single cycle for all steels used which imply that MA will have great role in the brittle fracture initiation for double cycle and the inter-pass temperature should be controlled for medium and high-carbon Mn steel to avoid large area fraction of MA. The beneficial effects of Niobium obtained in single pass weld were not observed for the double cycle or multi pass welds.

Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment Using J-integral (J-적분을 이용한 후판 부분용입 다층용접재의 파괴 해석)

  • Kim, Seok;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.300-307
    • /
    • 2002
  • Partial penetration welding joint is defined as groove welds welded from one side, without steel backing or groove welds welded from both sides but without back gouging. So it has an unwelded portion at the root of the weld. Study of partial penetration weldment fracture behavior includes residual stress analysis and fracture analysis. The J-integral loses its path independency in residual stress field. Therefore, it is necessary to introduce a new J-integral, J, which is defined including the effect of plastic deformation and thermal strain. In this study, theoretical formulation and program were developed for the evaluation of J-integral for the crack tip located in the weldment. Evaluations of fracture behavior were performed for partial penetration multi-pass weldment of 25.4mm thick plate by J-integral. From a point of fracture in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.