• Title/Summary/Keyword: Multi-objective function optimization

Search Result 273, Processing Time 0.027 seconds

Multilevel Multiobjective Optimization for Structures (다단계 다목적함수 최적화를 이용한 구조물의 최적설계)

  • 한상훈;최홍식
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Multi-level Multi-objective optimization(MLMO) for reinforced concrete framed structure is performed, and compared with the results of single-level single-objective optimization. MLMO method allows flexibility to meet the design needs such as deflection and cost of structures using weighting factors. Using Multi-level formulation, the numbers of constraints and variables are reduced at each levels, and the optimization formulation becomes simplified. The force approximation method is used to reflect the variation in design variables between the substructures, and thus coupling is maintained. And the linear approximated constraints and objective function are used to reduce the number of structural analysis in optimization process. It is shown that the developed algorithm with move limit can converge effectively to optimal solution.

  • PDF

Development of Pareto Artificial Life Optimization Algorithm (파레토 인공생명 최적화 알고리듬의 제안)

  • Song, Jin-Dae;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1358-1368
    • /
    • 2006
  • This paper proposes a Pareto artificial life algorithm for solving multi-objective optimization problems. The artificial life algorithm for optimization problem with a single objective function is improved to handle Pareto optimization problem through incorporating the new method to estimate the fitness value for a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm was applied to the optimum design of a journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application were presented to give the possible solutions to a decision maker or a designer. Furthermore, the relation between linearly combined single-objective optimization problem and Pareto optimization problem has been studied.

A Study on Objective Functions for the Multi-purpose Dam Operation Plan in Korea (국내 다목적댐 운영계획에 적합한 목적함수에 관한 연구)

  • Eum, Hyung-Il;Kim, Young-Oh;Yun, Ji-Hyun;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.737-746
    • /
    • 2005
  • Optimization is a process that searches an optimal solution to obtain maximum or minimum value of an objective function. Many researchers have focused on effective search algorithms for the optimum but few researches were interested in establishing the objective function. This study compares two approaches for the objective function: one allows a tradeoff among the objectives and the other does not allow a tradeoff by assigning weights for the absolute priority between the objectives. An optimization model using sampling stochastic dynamic programming was applied to these two objective functions and the resulting optimal policies were compared. As a result, the objective function with no tradeoff provides a decision making process that matches practical reservoir operations than that with a tradeoff allowed. Therefore, it is more reasonable to establish the objective function with no a tradeoff among the objectives for multi-purpose dam operation plan in Korea.

Stackelberg Game between Multi-Leader and Multi-Follower for Detecting Black Hole and Warm Hole Attacks In WSN

  • S.Suganthi;D.Usha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.159-167
    • /
    • 2023
  • Objective: • To detect black hole and warm hole attacks in wireless sensor networks. • To give a solution for energy depletion and security breach in wireless sensor networks. • To address the security problem using strategic decision support system. Methods: The proposed stackelberg game is used to make the spirited relations between multi leaders and multi followers. In this game, all cluster heads are acts as leaders, whereas agent nodes are acts as followers. The game is initially modeled as Quadratic Programming and also use backtracking search optimization algorithm for getting threshold value to determine the optimal strategies of both defender and attacker. Findings: To find optimal payoffs of multi leaders and multi followers are based on their utility functions. The attacks are easily detected based on some defined rules and optimum results of the game. Finally, the simulations are executed in matlab and the impacts of detection of black hole and warm hole attacks are also presented in this paper. Novelty: The novelty of this study is to considering the stackelberg game with backtracking search optimization algorithm (BSOA). BSOA is based on iterative process which tries to minimize the objective function. Thus we obtain the better optimization results than the earlier approaches.

A Study on Multi-objective Optimal Power Flow under Contingency using Differential Evolution

  • Mahdad, Belkacem;Srairi, Kamel
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-63
    • /
    • 2013
  • To guide the decision making of the expert engineer specialized in power system operation and control; the practical OPF solution should take in consideration the critical situation due to severe loading conditions and fault in power system. Differential Evolution (DE) is one of the best Evolutionary Algorithms (EA) to solve real valued optimization problems. This paper presents simple Differential Evolution (DE) Optimization algorithm to solving multi objective optimal power flow (OPF) in the power system with shunt FACTS devices considering voltage deviation, power losses, and power flow branch. The proposed approach is examined and tested on the standard IEEE-30Bus power system test with different objective functions at critical situations. In addition, the non smooth cost function due to the effect of valve point has been considered within the second practical network test (13 generating units). The simulation results are compared with those by the other recent techniques. From the different case studies, it is observed that the results demonstrate the potential of the proposed approach and show clearly its effectiveness to solve practical OPF under contingent operation states.

Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method (계수조건부 LMI를 이용한 다목적 제어기 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Cheon, Jong-Min;Kwon, Soon-Mam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Multi-objective optimization of anisogride composite lattice plate for free vibration, mass, buckling load, and post-buckling

  • F. Rashidi;A. Farrokhabadi;M. Karamooz Mahdiabadi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.89-107
    • /
    • 2024
  • This article focuses on the static and dynamic analysis and optimization of an anisogrid lattice plate subjected to axial compressive load with simply supported boundary conditions. The lattice plate includes diagonal and transverse ribs and is modeled as an orthotropic plate with effective stiffness properties. The study employs the first-order shear deformation theory and the Ritz method with a Legendre approximation function. In the realm of optimization, the Non-dominated Sorting Genetic Algorithm-II is utilized as an evolutionary multi-objective algorithm to optimize. The research findings are validated through finite element analysis. Notably, this study addresses the less-explored areas of optimizing the geometric parameters of the plate by maximizing the buckling load and natural frequency while minimizing mass. Furthermore, this study attempts to fill the gap related to the analysis of the post-buckling behavior of lattice plates, which has been conspicuously overlooked in previous research. This has been accomplished by conducting nonlinear analyses and scrutinizing post-buckling diagrams of this type of lattice structure. The efficacy of the continuous methods for analyzing the natural frequency, buckling, and post-buckling of these lattice plates demonstrates that while a degree of accuracy is compromised, it provides a significant amount of computational efficiency.

MULTI STAGE SHAPE OPTIMIZATION OF CENTRIFUGAL FAN FOR HOME APPLIANCE USING CFD (전산유체역학을 활용한 가전 제품용 원심팬 블레이드의 단계별 형상 최적화)

  • Kim, J.S.;Kang, T.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • We conducted a multi-stage optimization to secure the desired performance of a centrifugal fan for home appliance in an early stage of product development. In optimization, the static pressure at the outlet of the fan is chosen as an objective function that is to be maximized, providing the required flow rate at the operating point of the fan. The optimization procedure begins with parameters for an initial baseline fan design. The baseline design is optimized by using a commercial optimization package. Accordingly, the corresponding blade models with a set of geometrical parameters are generated. Flow through a fan is simulated by solving the Reynolds-averaged Navier-Stokes equations. A multi-stage optimization scheme is employed to determine the family of optimum values for the parameters, leading to the pressure increase at the outlet of the fan. To validate the numerically obtained optimal design parameters, we fabricated the three types of fans using rapid prototyping and assessed the performance using a fan tester. Experimental results show that the design parameters at each stage satisfy the goal of optimization. The multi-stage optimization process turned out to be a useful tool in the development of a centrifugal fan.

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

FUZZY GOAL PROGRAMMING FOR CRASHING ACTIVITIES IN CONSTRUCTION INDUSTRY

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.642-652
    • /
    • 2007
  • Many contracting firms and project managers in the construction industry have started to utilize multi objective optimization methods to handle multiple conflicting goals for completing the project within the stipulated time and budget with required quality and safety. These optimization methods have increased the pressure on decision makers to search for an optimal resources utilization plan that optimizes simultaneously the total project cost, completion time, and crashing cost by considering indirect cost, contractual penalty cost etc., practically charging them in terms of direct cost of the project which is fuzzy in nature. This paper presents a multiple fuzzy goal programming model (MFGP) that supports decision makers in performing the challenging task. The model incorporates the fuzziness which stems from the imprecise aspiration levels attained by the decision maker to these objectives that are quantified through fuzzy linear membership function. The membership values of these objectives are then maximized which forms the fuzzy decision. The problem is solved using LINGO 8 optimization solver and the best compromise solution is identified. Comparison between solutions of MFGP, fuzzy multi objective linear programming (FMOLP) and multiple goal programming (MGP) are also presented. Additionally, an interactive decision making process is developed to enable the decision maker to interact with the system in modifying the fuzzy data and model parameters until a satisfactory solution is obtained. A case study is considered to demonstrate the feasibility of the proposed model for optimization of project network parameters in the construction industry.

  • PDF