• Title/Summary/Keyword: Multi-objective function optimization

Search Result 273, Processing Time 0.039 seconds

Two-stage layout-size optimization method for prow stiffeners

  • Liu, Zhijun;Cho, Shingo;Takezawa, Akihiro;Zhang, Xiaopeng;Kitamura, Mitsuru
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Designing sophisticate ship structures that satisfy several design criteria simultaneously with minimum weight and cost is an important engineering issue. For a ship structure composed of a shell and stiffeners, this issue is more serious because their mutual effect has to be addressed. In this study, a two-stage optimization method is proposed for the conceptual design of stiffeners in a ship's prow. In the first stage, a topology optimization method is used to determine a potential stiffener distribution based on the optimal results, whereupon stiffeners are constructed according to stiffener generative theory and the material distribution. In the second stage, size optimization is conducted to optimize the plate and stiffener sections simultaneously based on a parametric model. A final analysis model of the ship-prow structure is presented to assess the validity of this method. The analysis results show that the two-stage optimization method is effective for stiffener conceptual design, which provides a reference for designing actual stiffeners for ship hulls.

Function Optimization and Event Clustering by Adaptive Differential Evolution (적응성 있는 차분 진화에 의한 함수최적화와 이벤트 클러스터링)

  • Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.451-461
    • /
    • 2002
  • Differential evolution(DE) has been preyed to be an efficient method for optimizing real-valued multi-modal objective functions. DE's main assets are its conceptual simplicity and ease of use. However, the convergence properties are deeply dependent on the control parameters of DE. This paper proposes an adaptive differential evolution(ADE) method which combines with a variant of DE and an adaptive mechanism of the control parameters. ADE contributes to the robustness and the easy use of the DE without deteriorating the convergence. 12 optimization problems is considered to test ADE. As an application of ADE the paper presents a supervised clustering method for predicting events, what is called, an evolutionary event clustering(EEC). EEC is tested for 4 cases used widely for the validation of data modeling.

Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams (상용압연 형강과 콘크리트 합성거더의 다단계 긴장력 최적설계)

  • 정홍시;김영우;박재만;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) girder constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stress at the top and bottom of slab, beam and infilled concrete due to a construction step. An Optimization of Matlab based program Is developed. The results show that the tendon position and concrete compression strength etc are important.

  • PDF

Electric Resistivity Reconstruction Using Multi-Resolution Property of Wavelet (Wavelet의 다중 분해능 특성을 응용한 DC 탐침 전기 비저항 역산 기법 연구)

  • Park, Seung-Bae;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.79-82
    • /
    • 1999
  • So far, The methods for identifying the parameters of some region or material have been developed. This paper describes a new method for electric resistivity reconstruction using multi-resolution property of wavelet. The outputs of the potential electrodes are computed using two dimensional FEM in the wave number space by Fourier transforming the governing equation. The resistance distribution in the region of interests, which makes the computed potential distribution coincide with the measured potential, is found by minimizing the objective function using an optimization method. Multi-resolution analysis introduced in this paper will be proved to be the proper method in the viewpoint of effectivity and time-consuming by the numerical results.

  • PDF

Adaptive Multi-class Segmentation Model of Aggregate Image Based on Improved Sparrow Search Algorithm

  • Mengfei Wang;Weixing Wang;Sheng Feng;Limin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.391-411
    • /
    • 2023
  • Aggregates play the skeleton and supporting role in the construction field, high-precision measurement and high-efficiency analysis of aggregates are frequently employed to evaluate the project quality. Aiming at the unbalanced operation time and segmentation accuracy for multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed to promote the SSA's optimization accuracy and stability without reducing the SSA's speed. The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly and automatically calculate the extreme value of the function and get the corresponding correct thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and processing speed is constructed. The results reveal that the CSSA outperforms the other seven methods of optimization performance, as well as the quality evaluation of aggregate images segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, which indicates that this combination is more suitable for segmenting the aggregate images.

A Study for Solving Multi-Depot Dial-a-Ride Problem Considering Soft Time Window (다수차고지와 예약시간 위반을 고려한 교통약자 차량 서비스에 대한 연구)

  • Kim, Taehyeong;Park, Bum-Jin;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.70-77
    • /
    • 2012
  • Dial-a-ride is the most widely available transit service for disabled persons or seniors in the United States and Europe. This paper studies a static dial-a-ride problem considering multiple depots, heterogeneous vehicles, and soft time windows. In this paper, we apply a heuristic based on clustering first-routing second(HCR) to a real-world large dial-a-ride problem from Maryland Transit Administration(MTA). MTA's real operation is compared with the results of developed heuristic for 24 cases. The objective function of the proposed model is to minimize the total cost composed of the service provider's cost and the customers' inconvenience cost. For the comparison, the objective function values of HCR do not include waiting cost, delay cost, and excess ride cost. The objective function values from HCR are better than those from MTA's operation for all cases. This result shows that our heuristic method can make the real operation better and more efficient.

Premixture Composition Optimization for the Ram Accelerator Performance Enhancement (램 가속기 성능 향상을 위한 예 혼합기 조성비 최적화에 관한 연구)

  • 전용희;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2$, $O_2$, $N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species have been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced 19% within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation (정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계)

  • Park, Ho-Sung;Jin, Yong-Ha;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Sustainable Closed-loop Supply Chain Model using Hybrid Meta-heuristic Approach: Focusing on Domestic Mobile Phone Industry (혼합형 메타휴리스틱 접근법을 이용한 지속가능한 폐쇄루프 공급망 네트워크 모델: 국내 모바일폰 산업을 중심으로)

  • YoungSu Yun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • In this paper, a sustainable closed-loop supply chain (SCLSC) network model is proposed for domestic mobile phone industry. Economic, environmental and social factors are respectively considered for reinforcing the sustainability of the SCLSC network model. These three factors aim at minimizing total cost, minimizing total amount of CO2 emission, and maximizing total social influence resulting from the establishment and operation of facilities at each stage of the SCLSC network model. Since they are used as each objective function in modeling, the SCLSC network model can be a multi-objective optimization problem. A mathematical formulation is used for representing the SCLSC network model and a hybrid meta-heuristic approach is proposed for efficiently solving it. In numerical experiment, the performance of the proposed hybrid meta-heuristic approach is compared with those of conventional meta-heuristic approaches using some scales of the SCLSC network model. Experimental results shows that the proposed hybrid meta-heuristic approach outperforms conventional meta-heuristic approaches.