• 제목/요약/키워드: Multi-objective Programming

검색결과 161건 처리시간 0.026초

Sensitivity Analysis on the Priority Order of the Radiological Worker Allocation Model using Goal Programming

  • Jung, Hai-Yong;Lee, Kun-Jai
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.577-582
    • /
    • 1998
  • In nuclear power plant, it has been the important object to reduce the occupational radiation exposure (ORE). Recently, the optimization concept of management science has been studied to reduce the ORE in nuclear power plant. In optimization of the worker allocation, the collective dose, working time, individual dose, an total number of worker must be considered and their priority orders must be thought because the main constraint is necessary for determining the constraints variable of the radiological worker allocation problem. The ultimate object of this study s to look into the change of the optimal allocation of the radiological worker as priority order changes. In this study, the priority order is the characteristic of goal programming that is a kind of multi-objective linear programming. From a result of study using goal programming, the total number of worker and collective dose of worker have changed as the priority order has changed and the collective dose limit have played an important role in reducing the ORE.

  • PDF

대입수능 선택과목 점수조정을 위한 선형계획모형 개발 및 활용 (A Linear Programming Model to the Score Adjustment among the CSAT Optional Subjects)

  • 남보우
    • 경영과학
    • /
    • 제28권1호
    • /
    • pp.141-158
    • /
    • 2011
  • This study concerns with an applicability of the management science approach to the score adjustment among the College Scholastic Aptitude Test(CSAT) optional subjects. A linear programming model is developed to minimize the sum of score distortions between optional subjects. Based on the analysis of the 377,089 CSAT(2010) applicants' performances in social science test section, this study proposes a new approach for the score equating or linking method of the educational measurement theory. This study makes up for the weak points in the previous linear programming model. First, the model utilize the standard score which we can get. Second, the model includes a goal programming concept which minimizes the gap between the adjusting goal and the result of the adjustment. Third, the objective function of the linear programing is the weighted sum of the score distortion and the number of applicants. Fourth, the model is applied to the score adjustment problem for the whole 11 optional subjects of the social science test section. The suggested linear programming model is a generalization of the multi-tests linking problem. So, the approach is consistent with the measurement theory for the two tests and can be applied to the optional three or more tests which do not have a common anchor test or a common anchor group. The college admission decision with CSAT score can be improved by using the suggested linear programming model.

다목적 차량경로문제를 위한 발견적 해법 (A Heuristic for Multi-Objective Vehicle Routing Problem)

  • 강경환;이병기;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1733-1739
    • /
    • 2006
  • This paper is concerned with multi-objective vehicle routing problem(VRP), in which objective of this problem is to minimize the total operating time of vehicles and the total tardiness of customers. A mixed integer programming formulation and a heuristic for practical use are suggested. The heuristic is based on the route-perturbation and route-improvement method(RPRI). Performances are compared with other heuristic appeared in the previous literature using the modified bench-mark data set. It is shown that the suggested heuristic give good solution within a short computation time by computational experiment.

  • PDF

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

전자상거래시스템 공급자 평가 및 선정에 관한 연구 (Fuzzified multi-object programming application in evaluation and selection of Electronic Commerce systems suppliers)

  • 정희진
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권4호
    • /
    • pp.226-235
    • /
    • 1999
  • 본 연구에서는 전자상거래시스템 공급자의 평가와 선정을 위한 모형을 구축하였다. 기업의 의사결정과 정은 여러 상충하는 목적들을 동시에 고려하는 경우가 대부분이기 때문에 이러한 상황에 적합한 다목표 지향적인 수리모형 구축의 필요성이 제시되었다. 또한 제공되는 데이터의 불명확성과 여러 목적들을 동시에 고려할 경우 발생할 수 있는 의사결정자의 열망수준과 그 만족정도를 반영하기 위해 본 연구에서는 3유형의 다목적계획모형을 제시하였다. 최소연산자 모형, 가중치 다목적계획모형 및 선제우선순위 다목적계획모형의 구축 후. 가상기업에 대한 설례를 통해 그 적용가능성을 알아보았다.

  • PDF

Optimal Design of Detention System using Incremental Dynamic Programming

  • Lee, Kil-Seong;Lee, Beum-Hee
    • Korean Journal of Hydrosciences
    • /
    • 제7권
    • /
    • pp.61-75
    • /
    • 1996
  • The purpose of this study is to develop an efficient model for the least cost design of multi-site detention systems. The IDP (Incremental Dynamic Programming) model for optimal design is composed of two sub-models : hydrologic-hydraulic model and optimization model. The objective function of IDP is the sum of costs ; acquisition cost of the land, construction cost of detention basin and pumping system. Model inputs include channel characteristics, hydrologic parameters, design storm, and cost function. The model is applied to the Jung-Rang Cheon basin in Seoul, a watershed with cetention basins in multiple branching channels. The application results show that the detention system can be designed reasonably for various conditions and the model can be applied to multi-site detention system design.

  • PDF

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

Stackelberg Game between Multi-Leader and Multi-Follower for Detecting Black Hole and Warm Hole Attacks In WSN

  • S.Suganthi;D.Usha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.159-167
    • /
    • 2023
  • Objective: • To detect black hole and warm hole attacks in wireless sensor networks. • To give a solution for energy depletion and security breach in wireless sensor networks. • To address the security problem using strategic decision support system. Methods: The proposed stackelberg game is used to make the spirited relations between multi leaders and multi followers. In this game, all cluster heads are acts as leaders, whereas agent nodes are acts as followers. The game is initially modeled as Quadratic Programming and also use backtracking search optimization algorithm for getting threshold value to determine the optimal strategies of both defender and attacker. Findings: To find optimal payoffs of multi leaders and multi followers are based on their utility functions. The attacks are easily detected based on some defined rules and optimum results of the game. Finally, the simulations are executed in matlab and the impacts of detection of black hole and warm hole attacks are also presented in this paper. Novelty: The novelty of this study is to considering the stackelberg game with backtracking search optimization algorithm (BSOA). BSOA is based on iterative process which tries to minimize the objective function. Thus we obtain the better optimization results than the earlier approaches.

Deriving Robust Reservoir Operation Policy under Changing Climate: Use of Robust Optimiziation with Stochastic Dynamic Programming

  • Kim, Gi Joo;Kim, Young-Oh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.171-171
    • /
    • 2020
  • Decision making strategies should consider both adaptiveness and robustness in order to deal with two main characteristics of climate change: non-stationarity and deep uncertainty. Especially, robust strategies are different from traditional optimal strategies in the sense that they are satisfactory over a wider range of uncertainty and may act as a key when confronting climate change. In this study, a new framework named Robust Stochastic Dynamic Programming (R-SDP) is proposed, which couples previously developed robust optimization (RO) into the objective function and constraint of SDP. Two main approaches of RO, feasibility robustness and solution robustness, are considered in the optimization algorithm and consequently, three models to be tested are developed: conventional-SDP (CSDP), R-SDP-Feasibility (RSDP-F), and R-SDP-Solution (RSDP-S). The developed models were used to derive optimal monthly release rules in a single reservoir, and multiple simulations of the derived monthly policy under inflow scenarios with varying mean and standard deviations are undergone. Simulation results were then evaluated with a wide range of evaluation metrics from reliability, resiliency, vulnerability to additional robustness measures. Evaluation results were finally visualized with advanced visualization tools that are used in multi-objective robust decision making (MORDM) framework. As a result, RSDP-F and RSDP-S models yielded more risk averse, or conservative, results than the CSDP model, and a trade-off relationship between traditional and robustness metrics was discovered.

  • PDF

활동기준원가시스템의 원가동인 선택 및 병합 (Cost Driver Selection and Aggregation for Activity-Based Costing)

  • 이한;이경근
    • 경영과학
    • /
    • 제17권2호
    • /
    • pp.115-124
    • /
    • 2000
  • Activity-Based Costing(ABC) is an accounting cost system which allocates the overhead cost to each cost object more accurately. ABC system achieves improved accuracy in estimating the cost of cost object by using multiple cost drivers to trace the cost of activities to the cost objects associated with the resources consumed by those activities. The selection and the aggregation of these cost driver candidates can pose difficult problems. This paper deals with these problems in mathematical programming approach. The first model is formulated as an integer programming model in cost driver selection and the second model is formulated as multi-objective goal programming model in reduction of cost drivers already selected.

  • PDF