• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.028 seconds

A study on the fabrication of Miniatured VCO using LTCC(Low Temperature Cofired Ceramic) (저온 소성 유전체 재료를 이용한 초소형 VCO (Voltage Controlled Oscillator) 제작에 관한 연구)

  • 유찬세;이영신;이우성;강남기;박종철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.135-138
    • /
    • 2002
  • VCO(Voltage Controlled Oscillator) is one of the main components governing the size, performance and power consumption of telecommunication devices. As the devices become much smaller, VCO need to have much smaller size with better characteristics. Buried type passive components of L,C,R were developed previously and the structure of these components are good for minimizing the size of VCO. Our own library of passive components is used in simulation and fabrication of VCO circuit, and surface mounted components like varactor diode are analysed using the measurement circuit designed by ourselves. Two-Dimensional simulation of VCO circuit and local three-Dimensional structure simulation are performed and their relation is obtained. In structure of multi-layered VCO, some components governing the characteristics of VCO are selected and placed on the top of oscillator for the good tuning process. In resonator part, the stripline structure and low loss glass/ceramic material are used to get higher Q value. In our research, a VCO oscillates in the 2.3∼2.36 GHz band is developed.

  • PDF

Multi-Region Structural-Acoustic Coupling Analysis on Noise Reduction of Layered Structures using Finite Element and Boundary Element Technique (경계요소법과 유한요소법에 의한 흡음판의 소음저감에 관한 다영역 연성해석)

  • Ju, Hyun-Don;Seo, Won-Jin;Lee, Shi-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.309-313
    • /
    • 2000
  • A structural-acoustic coupling problem involving fluid in a cavity divided with flexible walls and porous materials is investigated in this paper. In many practical problems, the use of finite elements to discretize the fluid region leads to large stiffness and mass matrices. But, since the acoustic boundary element discretization requires to put elements only on the surface of structure, the size of matrices is reduced considerably. Here, we developed a numerical analysis program for the structural-acoustic coupling problems of the multi-region cavity, using boundary elements for the fluid regions and finite elements for the structure. By considering sound transmission through layered systems placed in a cavity, the accuracy of the coupled acoustical-structural finite element model has been verified by comparing its transmission loss predictions with analytical sloutions. Example problems are included to investigate the characteristics of the multi-region structural-acoustic coupling system with porous material.

  • PDF

The Effect of Encapsulation Layer Incorporated into Polymer Substrates for Bending Stress (고분자 기판의 휨 스트레스에 대한 Encapsulation층의 효과)

  • 박준백;서대식;이상극;이준웅;김영훈;문대규;한정인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.443-447
    • /
    • 2004
  • In this study, we investigated the necessity of encapsulation layer to maximize flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer han a significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that han a significant effect on internal thermal stress. To compare the magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance (체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구)

  • Won, Jun-Ho;Kwang, Kang-Jin;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

A Study on Single-bit Feedback Multi-bit Sigma Delta A/D converter for improving nonlinearity

  • Kim, Hwa-Young;Ryu, Jang-Woo;Jung, Min-Chul;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.57-60
    • /
    • 2004
  • This paper presents multibit Sigma-Delta ADC using Leslie-Singh Structure to Improve nonlinearity of feedback loop. 4-bit flash ADC for multibit Quantization in Sigma Delta modulator offers the following advantages such as lower quantization noise, more accurate white-noise level and more stability over single quantization. For the feedback paths consisting of DAC, the DAC element should have a high matching requirement in order to maintain the linearity performance which can be obtained by the modulator with a multibit quantizer. Thus a Sigma-Delta ADC usually adds the dynamic element matching digital circuit within feedback loop. It occurs complexity of Sigma-Delta Circuit and increase of power dissipation. In this paper using the Leslie-Singh Structure for improving nonliearity of ADC. This structure operate at low oversampling ratio but is difficult to achieve high resolution. So in this paper propose improving loop filter for single-bit feedback multi-bit quantization Sigma-Delta ADC. It obtained 94.3dB signal to noise ratio over 615kHz bandwidth, and 62mW power dissipation at a sampling frequency of 19.6MHz. This Sigma Delta ADC is fabricated in 0.25um CMOS technology with 2.5V supply voltage.

  • PDF

Room Temperature Ferromagnetism on Co and Fe Doped Multi-wall Carbon Nano-tube

  • Chae, K.H.;Gautam, S.;Yu, B.Y.;Song, J.H.;Augustine, S.;Kang, J.K.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.171-171
    • /
    • 2011
  • Co and Fe doped multi-wall carbon nano-tubes (MWCNTs) synthesized by microwave plasma enhanced chemical vapor deposition (PECVD) technique are investigated with synchrotron radiations at Pohang Light Source (PAL) and European Synchrotron Radiation Facility (ESRF). Near edge x-ray absorption spectroscopy (NEXAFS) measurement at C K, Co $L_{3,2}$ and Fe $L_{3,2}$-edges, and x-ray magnetic circular dichroism (XMCD) at Co and Fe $L_{3,2}$-edges have been carried at 7B1 XAS KIST and 2A MS beamline, respectively, to understand the electronic structure and responsible magnetic interactions at room temperature. X-ray absorption spectroscopy (XAS) at C K-edge shows significant p-bonding and Co and Fe L-edges proves the presence of $Co^{2+}$ and $Fe^{2+}$ in octahedral symmetry. Co and Fe doped MWCNTs show good XMCD spectra at 300K. The effect on the magnetism is also studied through swift heavy ion (SHI) radiations and magnetism is found enhanced and change in the electronic structure in Co-CNTs is investigated.

  • PDF

The Support and Infill System of the Flexible Plan of Multi-Family Housing Based on Inhabitants' Need (거주자 요구를 토대로 본 가변형 아파트의 서포트와 인필 시스템)

  • Kim, Min-Kyung;Oh, Chan-Ohk
    • Journal of the Korean housing association
    • /
    • v.17 no.6
    • /
    • pp.129-140
    • /
    • 2006
  • The study suggests that to compensate for the variety of inhabitants, flexible housing plans are needed. Furthermore, it proposes the support and infill system for the flexible plan of multi-family housing based on the inhabitants need. The inhabitants' need for the flexible plan of multi-family housing was studied using a survey using models. The survey target was the 100 housewives living in a $126.6m^2$(sold as 45 Pyeong) Apartment in Busan. The characteristics of the respondents were first examined, then to figure out the attitude towards the need for the flexible plan of multi-family housing, the concept and preference for the plan, and the satisfaction level of the current apartment plan were analyzed. To find out the structure of the flexible plan of multi-family housing, the need for the structure, furniture, light, and finishing materials were studied. Lastly, to learn the durability of the construction material, the preferred moving period and the reasons were researched. On the basis of the findings, the support and infill system was suggested.

A Behavior of the Wet Etching of CoNbZr/Cu/CoNbZr Multi-Layer Films (CoNbZr/Cu/CoNbZr 다층막의 습식 식각 거동)

  • 김현식;이영생;송재성;오영두;윤재홍
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.645-650
    • /
    • 1997
  • We manufactured CoNbZr/Cu/CoNbZr multi-layer films by rf magnetron sputtering methods and formed the patterns on the deposited multi-layer films. In this study, we fabricated a new etchant for forming the patterns by the wet etching with etchant and we searched for the best etching conditions and the etchant composition. Cu was etched selectively independent on the concentration of iron chloride solution, but amorphous CoNbZr thin film did not. The etchant was achieved by iron chloride solution(17.5 mol%) mixed with HF (20 mol%) during 150 sec, which etched CoNbZr/Cu/CoNbZr multi-layer films at the same time. Also, the etchant etched CoNbZr/Cu/CoNbZr multi-layer films by the three-step. It was shown that the cross-section had the isotropic structure and excellent etching characteristics with the above etchant.

  • PDF

Integrating the Hoek-Brown Failure Criterion into the Holmquist-Johnson-Cook Concrete Material Model to Reflect the Characteristics of Field Rock Mass in LS-DYNA Blast Modeling (LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목)

  • Choi, Byung-Hee;Sunwoo, Choon;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.15-29
    • /
    • 2020
  • In this paper the Hoek-Brown (HB) failure criterion is integrated into the Holmquist-Johnson-Cook (HJC) concrete material model to reflect the inherent characteristics of field rock masses in LS-DYNA blast modeling. This is intended to emphasize the distinctive characteristics of field rock masses that usually have many geological discontinuities. The replacement is made only for the static strength part of the HJC material model by using a statistical curve fitting technique, and its procedure is described in detail. An example is also given to illustrate the use of the obtained HJC material model. Computation is performed for a plane strain model of a single-hole blasting on a field limestone by using the combination of the fluid-structure interaction (FSI) technique and the multi-material arbitrary Lagrangian Eulerian (MMALE) method in LS-DYNA.

Interface Design of Virtual Modeling Dataand Nonlinear Analysis Program (Virtual Modeling Data와 비선형 해석 프로그램의 Interface 설계)

  • Park, Jae-Guen;Lee, Heon-Min;Jo, Sung-Hoon;Lee, Kwang-Myong;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.100-103
    • /
    • 2008
  • Recently Development of construction system that subjective operators share and control information efficiently based on the three-dimensional space and design information throughout life cycle of construction project is progressing dynamically. In case of civil structures which are infrastructure, Demand for structure of complex system which has multi-functions such as super and smart bridges and express rails is increasing and system development which computerizes and integrates process of structure design is in need. For that, research about link way between three dimensional modeling data and structure analysis programs should be preceded. In this research, therefore, research about interface design between three dimensional virtual modeling data to automate efficient civil-structure-design and nonlinear finite element analysis program which is made up of reinforced concrete material model that express material's character clearly.

  • PDF