• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.029 seconds

A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom (하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구)

  • Kim, Ju-Young;Jung, Tae-Woong;Shin, Kyoung-Won;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2018
  • Because of the expectation of the non-invasive treatment effect, Various studies on the treatment of varicose veins using focused ultrasound are reported. In this study, the bio-tissue phantom and tissue equivalent phantom that can be applied to estimation of ultrasonic varicose veins treatment effect. Each phantom was evaluated for its usefulness by evaluating the acoustic characteristics and the shrinkage rate according to the ultrasonic irradiation. A multi-layer structure phantom with three layers of skin, fat, and muscle was constructed considering the structure of the tissue where the varicose veins occurred. The materials constituting each layer were made to have characteristics similar to human body. In addition, the multi-layered phantoms with blood vessel mimic tube, with bovine blood vessel, and with animal tissue were fabricated. The degree of shrinkage of blood vessel mimic material and vascular tissue according to ultrasonic irradiation was evaluated using B-mode image. As the results of this study, it was thought that the proposed phantom could be used effectively in the evaluation of ultrasonic varicose veins treatment. In addition, it is thought that these phantoms could be applied to the development of varicose vein treatment device using the focused ultrasound and the verification of the therapeutic effect.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

A development of new dielectric tracer test method for groundwater logging: laboratory soil column test (지하수 검층을 위한 새로운 유전율 추적자 시험법의 개발)

  • Kim Man-Il;Kim Hyoung-Soo;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.301-311
    • /
    • 2004
  • This study is suggested a new dielectric tracer test method to understand geological structure of porous media and groundwater flow to use the dielectric constant which is one of electrical special quality of various geological materials. To measure their parameters, tracer material is made an ethanol mixing liquid(EML) having a same specific gravity of water. Also, soil materials are prepared a dielectric tracer test using the FDR system that could measure dielectric constant for saturated standard sand and river sand layers which have different initial porosity. To compare with their results, we discussed with the concentration variation of saline water having a saline concentration $3\%$ which is general tracer material by using the electro multi-meter system in the laboratory or field test. In two tracer experiment results, EML tracer test could confirm definitely EML concentration variation from each saturated soil layer as standard and river sands. However, tracer test of saline water $3\%$ concentration could not confirm permeating movement of water by degree of salinity change because these are settled at lower part column in a whole column area continuously. These causes are that specific gravity of saline water is heavier than water. That is, it could know that deposition of saline water is composed of lower part of soil column continuously independently of the direction of water into saturated soil material.

Evaluation of the Nonlinearity Parameter in Unbound Material for Asphalt Concrete Pavement using Field-NDT Equipment (현장 도로평가장비를 이용한 입상재료층의 비선형 재료상수 추정에 관한 연구)

  • Seo, Joo Won;Choi, Jun Seong;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.227-234
    • /
    • 2008
  • This study examines which models are more suitable for representing mechanical property of unbound materials to analyze behavior of asphalt pavement structure. Results from FWD (Falling Weight Deflectometer) test were used to apply to nonlinear elastic model. The new method which can deduct material constants of nonlinear elastic model is suggested from FWD test data rather than laboratory resilient modulus ($M_R$) test. It is confirmed that the material constants are within the common range in subbase. Test output from FWD and MDD (Multi-Depth Deflectometer) was used to verify reliability of the model. From the results of verification, this study shows that a non-linear elastic model agrees to MDD test data more than a linear elastic model does.

Ecosystem Structure and Improvement of Naturalness in Urban Area -In the Case of Kangseo-gu in Seoul- (도시생태계 현황파악 및 자연성 증진 방안 -서울시 강서구를 사례로-)

  • 이수동;이경재
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.1-17
    • /
    • 2004
  • The focus of this study is the promotion of green area volumes and their naturalness, water circulation system, decline of entropy, creation of biological habitats and linkage of separated urban green space. Re-presentative urban biotope survey sites were categorized as urban biotope, semi-natural biotope, and natural forest. In the urban biotope, a residential biotope was constructed near the Han river and in mountain areas. The green-area ratio at the housing complex was about 25%. GVZ(Grunvolumenzahl) was 0.35m$^3$/m$^2$ at the 5∼10-story housing complex, and 1.53m$^3$/m$^2$ over the 11-story. As for the green-area structure of the housing complex, canopy layer, understory layer, and shrub layer were not differentiated and the green-area volume was not high enough. The green-area ratio of school areas as a public area biotope was 5∼20%. GVZ was 1.12m$^3$/m$^2$ at Myungduk High School, and 1.78m$^3$/m$^2$ at Jeonggok Elementary School. In order to convert the urban biotope into an ecological area, green areas around the buildings should be connected to urban buffer green areas, and multi-layer structures should be established with natural plant species. In the semi-natural biotope, neighbor parks were created park in the vicinity of the natural forests. GVZ was 0.28m$^3$/m$^2$, and plantation was established with single layer structure and was definitely insufficient for the area. The urban buffer green areas have been established in strip corridors with the width of 20∼123m. In those areas, GVZ was 0.16∼0.27m$^3$/m$^2$ and had a deficient canopy layer, understory layer, and shrub layer. Soil conditions were not favorable for tree growth. In the natural biotope, GVZ of the plantation was 1.03∼1.5m$^3$/m$^2$ but the high crown closure of this area reduces the chance of species change and succession. GVZ of natural forest was 2.53∼2.57m$^3$/m$^2$. It is desirable to plant diverse plants and the natural forest should be succeeded by broad-leaf deciduous tree species. To improve the value of biotope at Kangseo-Gu, building height needs to be limited to reduce the environmental deterioration in the city. In order to maintain the water circulation system, water-permeable material is recommened when the urban surface areas are paved. The establishment of a water circulation system will improve ground water levels, soil moisture, water quality, and habitats. In order to improve biological diversity, it is desirable to have multi-layer structures in urban green areas with native species.

The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

  • Park, Jeong-ung;An, Gyubaek;Woo, Wanchuck
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.129-140
    • /
    • 2018
  • A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress). In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180 MPa, while in case of thickness at 70 mm, it was 200 MPa. The increase in compressive residual stress is almost the same as the initial stress. However, if initial stress was tensile, there was no significant change in the maximum compression residual stress.

Design and Strength Analysis of a Mast and Mounting Part of Dummy Gun for Multi-Mission Unmanned Surface Vehicle (복합임무 무인수상정의 마스트 및 특수임무장비 장착부 설계 및 강도해석)

  • Son, Juwon;Kim, Donghee;Choi, Byungwoong;Lee, Youngjin
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.51-59
    • /
    • 2018
  • The Multi-Mission Unmanned Surface Vehicle(MMUSV), which is manufactured using glass Fiber Reinforced Plastic(FRP) material, is designed to perform a surveillance and reconnaissance on the sea. Various navigation sensors, such as RADAR, RIDAR, camera, are mounted on a mast to perform an autonomous navigation. And a dummy gun is mounted on the deck of the MMUSV for a target tracking and disposal. It is necessary to analyze a strength for structures mounted on the deck because the MMUSV performs missions under a severe sea state. In this paper, a strength analysis of the mast structure is performed on static loads and lateral external loads to verify an adequacy of the designed mast through a series of simulations. Based on the results of captive model tests, a strength analysis for a heave motion of the mast structure is conducted using a simulation tool. Also a simulation and fatigue test for a mounting part between the MMUSV and the dummy gun are performed using a specimen. The simulation and test results are represented that a structure of the mast and mounting part of the dummy gun are appropriately designed.he impact amount are performed through simulation and experiments.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

A Study of Expectation Effective Analysis According to Improvement in Quality of the Paper Packaging Material and Structure -Focusing on EPR Items- (종이팩의 재질구조 개선에 따른 기대효과 분석에 관한 연구 -EPR 대상 품목을 중심으로-)

  • Ko, Euisuk;Song, Kihyeon;Cho, Suhyun;Shim, Woncheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As the foods and household manufacturing technology is developed, the packaging method of products is being changed from single to multi materials and layers. This study were focused on EPR carton packaging, economic and environmental expected effects were predicted by the improvements of packaging materials and structures to reduce effective packaging waste. Especially expected effects were predicted when improving the structure and material of aluminum laminated material was difficult to recycle. Thus, it was assumed the aseptic carton packaging laminated aluminum were replaced with silica laminated films. In conclusion, analysis of economic expected effects were undervalued in this study because of the limitation of assumptions, though this study has significance about a new approach by calculating the data different from the past that the conventional methods like predictive value of government's guidelines or goals.

A Study on Geothermal Characteristics of Dam Body and Seepage Flow (댐 제체 및 침투수 흐름의 지열학적 고찰)

  • Park, Dong-Soon;Jung, Woo-Sung;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.75-85
    • /
    • 2006
  • In recent geotechnical engineering, geothermal approach has been on the horizon to deal with geoenvironmental issues, freezing and thawing problems, and seepage phenomenon in dams and embankments. In this study, geothermal characteristic through inner body of dams and its influence on the seepage flow were experimented by lab test and field instrumentation. Also, one of up-to-date temperature monitoring technique, called as multi-channel thermal line sensing, was evaluated its availability. As a result of lab test, it is found that the seepage flow has influence on the geothermal characteristic and a potential of finding phreatic line and seepage fluctuation could be possible by continuous temperature monitoring using thermal line sensing skills. These kine of geothermal information could be available to the modelling of water geo-structure interaction. Out of short-term field tests, clear water table and temperature distribution of a dam were easily found through temperature monitoring in holes located near a reservoir and holes within a depth of constant temperature layer. However, it is also found that the geothermal flow and finding seepage line could not be easily understandable through multi-channel temperature monitoring because of the existence of constant temperature field, thermal conductivity of soils and rocks, and unsaturated characteristics of geo-material. In this case, long-term geothermal monitoring is recommended to find sudden fluctuation of seepage line and amount of leakage.

  • PDF