• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.026 seconds

A Study on Thin-Film Silicon Solar Cells with Multi-Architecture Etching Technique to Improve Light Trapping (광 포획 향상을 위한 다중 아키텍처 식각 기술을 적용한 박막 실리콘 태양전지에 관한 연구)

  • Hyeong Gi Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.337-344
    • /
    • 2024
  • This work focuses on improving the light-harvesting efficiency of thin-film silicon solar cells through innovative multi-architecture surface modifications. To create a regular optical structure, a lithographic process was performed to form it on a glass substrate through various etching processes, from Etch-1 to Etch-3. AZO was deposited on top of the structures and re-etched to create a multi-architectural surface. These surface-modified structures improved the light absorption and overall performance of the solar cell through changes in optical and physical properties, which we will analyze. In addition, we investigated the effect of post-cleaning on the etched glass structures through EDX analysis to understand the mechanism of the etching action. The results of this study are expected to provide important guidelines for the design and fabrication of solar cells and other photovoltaic devices.

An Estimation on Characteristics of SOG Film for MEMS Application (MEMS 응용을 위한 SOG 막의 특성 평가)

  • Kim, Hyoung-Dong;Lee, Seong-Jun;Pack, Seung-Ho;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.609-611
    • /
    • 1995
  • In this study, we experimented the properties of SOG film as sacrificials layers in surface micromachining and made $SiO_2$ films through spin, bake, cure process. When we culled SOG films once, SOG film thickness is 1000 $\sim$ 3000 ${\AA}$. Then we coaled 200-${\AA}$ SOG film on 9000 ${\AA}$-CVD oxide and then we fabricated test structure, cantilever and ring/beam structure. We estimated deformed structure by SEM. As the results, The deformation of the structure layer in the SOG-coated sacrificial layers is small compared with that or the structure layer on CVD oxide or PSG. In the future, we use multi coated SOG films, SOG film become adequate material as sacrificial layer.

  • PDF

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

Simulation of Optical Characteristics of 1.3 μm GaAs-Based GaAsSb/InGaAs and GaAsSb/InGaNAs Quantum Well Lasers for Optical Communication (광통신용 GaAs 기반 1.3 μm GaAsSb/InGaAs와 GaAsSb/InGaNAs 양자우물 레이저의 광학적특성 시뮬레이션)

  • Park, Seoung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Optical gain characteristics of $1.3{\mu}m$ type-II GaAsSb/InGaNAs/GaAs trilayer quantum well structures were studied using multi-band effective mass theory. The results were compared with those of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structures. In the case of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure, the energy difference between the first two subbands in the valence band is smaller than that of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. Also, $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure shows larger optical gain than $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. This means that GaAsSb/InGaNAs/GaAs system is promising as long-wavelength optoelectronic devices for optical communication.

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Multi-Stage Adaptive Noise Cancellation Technique for Synthetic $Hard-{\alpha}$ Inclusion (합성 $Hard-{\alpha}$ Inclusion의 다단계 적응형 노이즈 제거기법 연구)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.455-463
    • /
    • 2003
  • Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed.

The Warpage Phenomena of Electrolyte Layer During the Sintering Process in the Layered Planar SOFC Module (적층 평판형 SOFC 모듈에서 소결 시 전해질 층의 휨 현상)

  • Oh, Min-Wook;Gu, Sin-Il;Shin, Hyo-Soon;Yeo, Dong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.241-246
    • /
    • 2012
  • A layered planer SOFC module was designed from planar-type SOFC. It was prepared by multi-layered ceramic technology. To form the cathode and the anode in the layered structure, reliable channels should be made on the both side of electrolyte perpendicularly. However, monolithic SOFC using multi-layered ceramic technology hasn't been studied another group, and the warpage of electrolyte in the channel, also, hasn't been studied, when electrode is printed on the electrolyte. In this study, the channels are prepared with electrode printing, and their warpage are evaluated. In the case of YSZ without electrode, the warpages are nothing in the limit of measurement using optical microscope. The warpage of 'YSZ-NiO printed' increases than that of 'NiO printed', and also, the case of 'double electrode printed' is similar to 'YSZ-NiO printed'. It is thought that, in the printed electrolyte, the warpage is related to the difference of the sintering behavior of each material.

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

Microstructure and Material Properties of Fibrous Al2O3-(m-ZrO2)/t-ZrO2 Composite Depending on the Volume Fraction of Core/Shell (코어/쉘 부피비에 따른 섬유상 Al2O3-(m-ZrO2)/t-ZrO2 복합재료의 미세조직 및 물성)

  • Kim Ki-Hyun;Lee Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.751-755
    • /
    • 2005
  • Fibrous $Al_2O_3-(m-ZrO_2)/t-ZrO_2$ composites having core/shell structure were fabricated by multi-extrusion process. The effect o volume fraction between core ($Al_2O_3-(m-ZrO_2)$) and shell ($t-ZrO_2$ was investigated to understand the relationship between microstructure and material properites, in which the volume fractions of core and shell were varied as 40:60, 50:50 and 60:40. The material properties o hardness and bending strength were increased as the volume fraction of core was increased, and their maximum values were about 1320 Hv and 750MPa, respectively. However, as the volume fraction of core increased, the values of relative density and fracture toughness were decreased from 97.1 to $96.5\%$ and from $6.5MPa{\cdot}m^{1/2}$ to $5.7MPa{\cdot}m^{1/2}$, respectively.