• 제목/요약/키워드: Multi-material simulation

검색결과 326건 처리시간 0.028초

Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory

  • Bourada, Fouad;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Azzaz, Abdelghani;Zinata, Amina;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.19-30
    • /
    • 2019
  • This article present the free vibration analysis of simply supported perfect and imperfect (porous) FG beams using a high order trigonometric deformation theory. It is assumed that the material properties of the porous beam vary across the thickness. Unlike other theories, the number of unknown is only three. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the beams are simply supported the Navier's procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature.

Performance Analysis of the Eddy Current Braker with Multi-layer Rotor Considering Constant Braking Torque

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Han, Kyoung-Hee;Beak, Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.59-64
    • /
    • 2004
  • Study of an accurate and robust braking control method is required as a technical improvement to the servo system. In particular, the braker exhibiting constant braking performance under speed variation conditions of the prime mover needs to be investigated. In this paper, the braking torque of the eddy current braker between the electromagnet stator and rotating disk is analyzed. The torque-speed characteristics and accurate disk construction are represented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of the stator. These relations are confirmed by experimental results.

재료변형의 멀티스케일 해석에 관한 새로운 접근법 (A New Approach for Multi-Scale for Material Deformation)

  • 박준영;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2004
  • Recently, an approach for nanoscale deformation has been developed that couples the atomistic and continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this approach still has problems to connect two approaches because of the difference of basic assumptions, continuum and atomistic. To solve this problem, an alternative way is developed that connects the quasimolecular dynamics (QMD) and molecular dynamics (MD). In this paper, we suggest the way to make and validate the MD-QMD coupled model.

  • PDF

Chain stitch 다축경편물의 전단 및 성형 거동에 관한 연구 (Study on the Shear and Forming Behavior of Chain Stitched Multi-axial Warp Knitted Fabric Preform)

  • 이지석;홍석진;유웅렬;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.107-110
    • /
    • 2005
  • In this study we investigated the shear and forming behavior of chain stitched multi-axial warp knitted fabric preform, so called non-crimp fabric (NCF). The picture frame test was performed to characterize the shear behavior of NCF and also provide material properties for the numerical simulation of its deformation behavior. The forming behavior of NCF with chain stitch were investigated using hemispherical forming tools. The experimental results show that processing conditions such as blank holder force (BHF) and preform shape are crucial to determining the forming behavior of NCF. For instance, an asymmetric formed shape, which is due to the stitches introduced to NCF, turns into a symmetric one as BHF increases. Furthermore the in-plane and out-of buckling (wrinkle), the severance of which were quantified using image processing method, decreases significantly as BHF increases.

  • PDF

GA를 이용한 다중경로의 시스템의 AGV 대수 결정 문제 (Determination of Number of AGVs in Multi-Path Systems By Using Genetic Algorithm)

  • 김환성;이상훈
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.319-325
    • /
    • 2001
  • Recently. AGV systems are used to serve the raw material to each work stations automatically. There exists a trade-off between the adequate service supply and the number of purchased AGVs. Also, to reduce the overall production cost, the amount of inventory hold on the shop floor should be considered. In this paper, we present a heuristic technique for determining the number of AGVs which includes the net present fixed costs of each station, each purchased AGV, delivering cost, stock inventory cost, and safety stock inventory cost. Secondly, by using a genetic algorithm, the optimal number of AGVs and the optimal reorder quantity at each station are decided. Lastly, to verify then heuristic algorithm, we have done a computer simulation with different GA parameters.

  • PDF

9% 니켈강 후판 용접부의 강도 및 잔류응력 (Welding Residual Stress and Strength of Thick 9% Nickel Steel Plate)

  • 김영균;김영완;김재훈
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.85-90
    • /
    • 2014
  • In this paper, the transient thermal and residual stress analysis of the welding of 9% Ni steel plates using the FEA software ABAQUS are presented. The 9% Ni steel plates are welded manually with welding consumables of 70% Ni based Inconel type super-alloys (YAWATA WELD B (M)), producing a multi-pass/multi-layer butt weld. For these materials, temperature dependant mechanical and thermal material properties are used in the analysis. The back gouging is considered in welding process simulation. The FE thermal results are validated by comparing the real fusion profile and heat affected zone (HAZ). In addition, the continuous indentation test was conducted to measure the strength of base metal, HAZ and weld metal.

Implementation of Low Loss Radome with Hexa mesh for Ku-Band

  • Seo, Kang;JeongJin, Kang
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.555-560
    • /
    • 2022
  • In this study, the insertion loss and phase delay according to the multi-layer structure radome parameters were analyzed using the boundary value solution approach, and the multi-layer structure and hexa mesh structures with low-loss electrical characteristics for the Ku-band transmission/reception frequency of 10.7 ~ 14.5 GHz were designed and manufactured. A hexa mesh was applied to minimize radio wave transmission and scattering, which lowered the transmittance refractive index according to the radio incident angle and minimized dielectric loss through high-density foam. Similar to the simulation result, the transmission loss obtained the gain in a specific receiving frequency band, and in the transmission frequency band, an excellent low loss characteristic was obtained with an insertion loss of 0.8dB or less. The results of this study can be used in radio transmission radomes of low-weight, low-cost end-system protection devices.

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권2호
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측 (Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach)

  • 진교국;하성규;김재혁;한훈희;김성종
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3176-3183
    • /
    • 2010
  • 본 논문은 다축 하중을 받는 복합재 압력용기의 멀티 스케일 피로수명 예측 방법을 제시하였다. 멀티 스케일 접근법은 복합재료의 기본 구성재료인 섬유, 기지 및 섬유/기지 경계면의 거동으로부터 복합재 플라이, 적층판 및 구조물의 전체 거동을 예측한다. 멀티 스케일 피로수명은 거시적 응력 해석과 미시적 피로파손 해석을 통해 예측된다. 유한요소법을 이용하여 복합재 압력용기의 적층판에 가해지는 다축 피로하중을 구하며, 고전적층판이론을 이용하여 적층판의 플라이 응력을 계산하였다. 미소역학 모델을 이용하여 플라이 응력으로부터 각각 섬유, 기지 및 섬유/기지 경계면에 발생되는 응력을 계산하였다. 복합재 구성재료의 피로수명은 섬유에 대해서는 최대응력법을, 기지에 대해서는 등가응력법을, 섬유/기지 경계면에 대해서는 임계평면법을 사용하였다. 평균응력을 고려하기 위하여 수정된 Goodman 식을 적용하였다. 모든 피로하중에 의한 손상은 Miner 법칙을 이용하여 선형 누적이 되고, 이를 통해 최종 피로파손을 판단한다. 섬유와 기지의 물성값, 섬유체적비 및 와인딩 각도의 확률분포에 따른 복합재 압력용기의 피로수명 영향을 분석하기 위해 몬테카르로 시뮬레이션을 수행하였다.