• 제목/요약/키워드: Multi-material flow

검색결과 145건 처리시간 0.021초

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF

다품종흐름생산 시스템의 물류개선에 관한 연구 (A study on Material Flow Improvement of Multiproduct Flow Line Production System)

  • 이화기;성연호
    • 산업공학
    • /
    • 제6권1호
    • /
    • pp.99-112
    • /
    • 1993
  • This study deals with analysis of material from in Tube manufacturing line. This line is a multi product flow ship type production line, which consists of 5 steps of work station. Some work stations involve in unnecessary moving activities of workers and much work in-process storage due to the non-systematic material flow with respect to the different lot size production of multi-items. To improve productivity for this line, one alternative is considered such as grouping two work stations by using GT and JIT concepts. Also, feasibility analysis for this alternative is performed using and simulation model built by SIMAN IV simulation language.

  • PDF

자동차용 허브 클러치의 유동제어에 관한 실험적 연구 (Experimental Investigation on the Flow Control of Hub Clutch for Automobile)

  • 박종남;김동환;김병민
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.430-438
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in orther to change of the cold forging from conventional deep drawing forming. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be performed double action press. The proposed technology is applied to hub clutch model which is part of auto-transmission for automobile. The purpose of this study is to investigate the material flow behavior of hub clutch through control the relative velocity ratio and the stroke of mandrel and punch using the flow forming technique. First of all, the finite element simulations are applied to analyse optimal process conditions to prevent flow defect(necking defect etc.) from non-uniform metal flow, then the results are compared with the plasticine model material experiments. The punch load for real material is predict from similarity law. Finally, the model material experiment results are in good agreement with the FE simulation ones.

적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구 (A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller)

  • 김훈모
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계 (A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller)

  • 김훈모
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용 (Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application)

  • 김기홍;여재익
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.571-579
    • /
    • 2009
  • 에너지 물질과 같이 연소 반응을 하는 압축성 물질을 해석하기 위하여 Hydro-SCCM (Shock Compression of Condensed Matter)이라는 에너지 물질과 비반응 물질을 포함한다중 물질 해석툴을 개발하였다. 고에너지 물질은 강한 충격파와 고온과 고압을 가진 물질경계면에서 높은 변형률을 발생시킨다. 이러한 큰 구배를 가진 현상을 해석하기 위하여 새로운 오일러리안 기법을 사용하였다. 본 논문에서는 현상을 해석하기 위한 수학적 방법과 해석결과를 소개하였다.

고에너지 물질 연소를 기반으로 한 Multi Physics Modeling (How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference)

  • 김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.238-241
    • /
    • 2007
  • We present an innovative method of multi-physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, hish temperature, strong non-linear shock waves, and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that makes it suitable for high strain-rate multi-material interaction problems. Furthermore we eliminate the possible interface smearing by using the level sets. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress applications of our algorithm including the Taylor impact test, explosive venting and additional confined explosion problems of modem interest.

  • PDF

Innovative Modeling and Simulation of Reacting Flow with Complex Confined Boundaries

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.311-319
    • /
    • 2008
  • We present an innovative method of multi physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, high temperature, strong shock waves and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that make it suitable for high strain rate multi-material interacting problems. Furthermore we eliminate the possible interface smearing by using the level sets. We heave devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress application of our integrated framework.

  • PDF

Adaptive Moment-of-Fluid Method:a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

Adaptive Moment-of-Fluid Method: a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF