• 제목/요약/키워드: Multi-loop control

검색결과 235건 처리시간 0.021초

시변 페이딩 채널하에 CDMA 시스템을 위한 예측 폐루프 전력제어 (Predictive Closed-Loop Power Control for CDMA Systems in Time-Varying Fading Channels)

  • 최상호
    • 한국통신학회논문지
    • /
    • 제30권11A호
    • /
    • pp.1021-1026
    • /
    • 2005
  • 본 논문에서는 시변 페이딩 채별에 적합한 멀터스텝 LS 선형예측기를 갖는 새로운 예측 CDMA 폐루프 전력 제어 방식을 제안한다. 제안된 방식은 다중 전력 제어 그룹 지연을 효과적으로 보상하여 주며 단일 스텝 예측기를 갖는 기존의 예측 CLPC 방식이나 비예측 CLPC 방식에 비하여 우수한 성능 이득을 갖는다.

Multi-loop PID Control Method of Brushless DC Motors via Convex Combination Method

  • Kim, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.72-77
    • /
    • 2017
  • This paper proposes the explicit tuning rule of multi-loop PID controller for brushless direct current motors to predict the system behaviors in time and frequency domains, using properties of the convex combination method. The convex set of the proposed controllers formulates the envelope to satisfy the performances in time and frequency domains. The final control parameters are determined by solving the convex optimization problem subject to the constraints which are represented as convex set of time domain performances. The effectiveness of the proposed control method is shown in the numerical simulation, in which controller tuning algorithm and dynamics of brushless DC motor are well taken into account.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

SMISMO 밸브 구조를 채용한 유압식 굴삭기의 평탄화 작업을 위한 휴리스틱 접근 (A Heuristic Approach for Grading Operation of Hydraulic Excavator Systems using SMISMO Valve Configuration)

  • 조중선;황철민
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1153-1160
    • /
    • 2013
  • SMISMO valve configuration is now starting to draw attention of the researchers of the construction equipment industry to increase the fuel efficiency of their equipment like excavators and wheel-loaders. An open-loop control strategy for grading operation of hydraulic excavator systems using SMISMO valve configuration is investigated in this paper. Tabor's algorithm for 1 d.o.f. SMISMO system under the assumption of quasi-static operation is revealed as not adequate for multi d.o.f. system with large moment of inertia even though the motion of the system is slow. New parameters are proposed in this paper. It modifies Tabor's open-loop control strategy for the grading operation of hydraulic excavators using SMISMO valve configuration. A simulation-based parameter tuning method is also proposed. It uses GA (Genetic Algorithm) to find the best parameter values. Simulation study for a practical hydraulic excavator shows the validity of the proposed open-loop control strategy.

STATCOM을 사용한 다기 전력 계통의 버스 전압 조절을 위한 모델 기반 PID 제어기 설계 (Innovative Model-Based PID Control Design for Bus Voltage Regulation with STATCOM in Multi-Machine Power Systems)

  • 김석균;이영일;송화창;김정수
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.299-305
    • /
    • 2013
  • The complexity and severe nonlinearity of multi-machine power systems make it difficult to design a control input for voltage regulation using modern control theory. This paper presents a model-based PID control scheme for the regulation of the bus voltage to a desired value. To this end, a fourth-order linear system is constructed using input and output data obtained using the TSAT (Transient Security Assessment Tool); the input is assumed to be applied to the grid through the STATCOM (STATic synchronous COMpensator) and the output from the grid is a bus voltage. On the basis of the model, it is identified as to which open-loop poles of the system make the response to a step input oscillatory. To reduce this oscillatory response effectively, a model-based PID control is designed in such a way that the oscillatory poles are no longer problematic in the closed loop. Simulation results show that the proposed PID control dampens the response effectively.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

가상현실을 위한 다중 접촉 실시간 햅틱 랜더링 (Real-Time Haptic Rendering for Multi-contact Interaction with Virtual Environment)

  • 이경노;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.663-671
    • /
    • 2008
  • This paper presents a real-time haptic rendering method for multi-contact interaction with virtual environments. Haptic systems often employ physics-based deformation models such as finite-element models and mass-spring models which demand heavy computational overhead. The haptic system can be designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. A multi-rate output-estimation with an exponential forgetting factor is proposed to implement real-time haptic rendering for the haptic systems with two sampling rates. The computational burden of the output-estimation increases rapidly as the number of contact points increases. To reduce the computation of the estimation, the multi-rate output-estimation with reduced parameters is developed in this paper. Performance of the new output-estimation with reduced parameters is compared with the original output-estimation with full parameters and an exponential forgetting factor. Estimated outputs are computed from the estimated input-output model at a high rate, and trace the analytical outputs computed from the deformation model. The performance is demonstrated by simulation with a linear tensor-mass model.

다변수 예측제어 시스템의 강인성 향상을 위한 관측기 다항식 설계 (Observer Design for Enhanced Robustness of Multivariable Predictive control)

  • 김정수;윤태웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.497-499
    • /
    • 1999
  • This paper considers enhancing the robustness of a MIMO(Multi-Input Multi-Output) predictive control system. The characteristic polynomial matrix of the closed-loop is shown to consist of two factors $P_c$ and T, where $P_c$ is determined by the tuning knobs of the predictive controller and T is an observer or prefilter polynomial matrix. The robust stability condition is derived in terms of $P_c$ and T. A guideline on the selection of T is then presented for open-loop stable processes.

  • PDF

Adaptive Predictive Control using Multiple Models, Switching and Tuning

  • Giovanini Leonardo;Ordys Andrzej W.;Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.669-681
    • /
    • 2006
  • In this work, a new method of design adaptive controllers for SISO systems based on multiple models and switching is presented. The controller selects the model from a given set, according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a predictive control law that ensures the robust stability of the closed-loop system and achieves the best performance for the current operating point. At each sample the proposed control scheme identifies a set of linear models that best characterizes the dynamics of the current operating region. Then, it carries out an automatic reconfiguration of the controller to achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.