• Title/Summary/Keyword: Multi-level Modulation Scheme

Search Result 39, Processing Time 0.022 seconds

Improved Modulation Scheme for Medium Voltage Modular Multi-level Converter Operated in Nearest Level Control (근사레벨제어로 동작하는 중전압 모듈형 멀티레벨 컨버터의 개선된 전압변조기법)

  • Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.285-296
    • /
    • 2017
  • This paper proposes an improved modulation scheme for the medium voltage modular multi-level converter (MMC), which operates in the nearest level control and applies in the medium voltage direct current (MVDC) system. In the proposed modulation scheme, the offset (neutral-to-zero output) voltage is adjusted, with the phase voltage magnitude, thereby maintaining a constant value with N+1 level in the controllable modulation index (MI) range. In order to confirm the proposed scheme's validity, computer simulations for the 22.9 kV - 25 MVA MMC were performed with PSCAD/EMTDC, as well as hardware experiments for the 380 V - 10 kVA MMC. The proposed modulation scheme offers to build a constant pole voltage regardless of the MI value, and to build a phase voltage with improved total harmonic distortion (THD).

Joint Demodulation and Decoding System for FTN (FTN 시스템을 위한 동시 복조 및 복호 기법)

  • Kang, Donghoon;Oh, Wangrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose an efficient joint demodulation and decoding scheme for FTN (Faster than Nyquist) systems. Several previous works have demonstrated that ISI (Inter Symbol Interference) cancellation schemes based on BCJR (Bahl-Cocke-Jelinek-Raviv) algorithm are suitable for FTN systems. Unfortunately, required complexity of the previous ISI cancellation schemes is very high, especially when a multi-level modulation scheme is employed. In this paper, we propose a joint demodulation and decoding scheme for FTN systems with an iteratively decodable channel coding scheme and a multi-level modulation. Compared with the previously proposed schemes, the proposed scheme not only offers reliable performance but also requires relatively low complexity. Also, the proposed scheme can be easily applied to the FTN system with a multi-level modulation with a minor modification.

A Multicoded-PPM Scheme for High Data Rate UWB Communication Systems

  • lung, Sung-Yoon;Park, Dong-Jo
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.271-278
    • /
    • 2009
  • A new modulation scheme called multicoded-pulse position modulation (MC-PPM) is proposed for an ultrawideband (UWB) impulse radio communication system. The multicoded signal is generated by using several orthogonal codes for transmitting data simultaneously. Then, each multi-level value of the multicoded signal is converted to pulse position which results in not only an improved data rate, but also a processing gain in reception, delivering the power-efficient benefit of PPM and guaranteeing the low pulse energy for UWB systems. We notice that the modulation of multi-level values of the multicoded signal to pulse position is more efficient in terms of achievable data rate than the modulation of transmitting data based on other PPM schemes within given bandwidth and pulse energy. Therefore, as a performance measure, we focus on the achievable data rate (link capacity) of the proposed scheme and analyze it theoretically. Through simulation, we compare the link capacity of the MC-PPM scheme and other PPM schemes, such as M -ary PPM and multiple PPM. With the fixed bandwidth and same pulse energy condition, the UWB system based on the proposed MC-PPM scheme shows good link capacity and an increased data rate as L increases, which is contrary to other PPM schemes.

Multi-coded Variable PPM for High Data Rate Visible Light Communications

  • Moon, Hyun-Dong;Jung, Sung-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • In this paper, we propose a new modulation scheme called multi-coded variable pulse position modulation (MC-VPPM) for visible light communication systems. Two groups of signals (Pulse Width Modulation (PWM) and Pulse Position Modulation (PPM) groups) are multi-coded by orthogonal codes for transmitting data simultaneously. Then, each multi-level value of the multi-coded signal is converted to pulse width and position which results in not only an improved data rate, but also a processing gain in reception. In addition, we introduce average duty ratio and cyclic shift concepts in PWM through which dimming control for light illumination can be supported without any degradation in communication performance. Through simulation, we confirm that the proposed MC-VPPM shows a comparable BER curve and much greater achievable data rate than the conventional VPPM scheme using a visible light optical channel environment.

Dimmable Spatial Intensity Modulation for Visible-light Communication: Capacity Analysis and Practical Design

  • Kim, Byung Wook;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.532-539
    • /
    • 2018
  • Multiple LED arrays can be utilized in visible-light communication (VLC) to improve communication efficiency, while maintaining smart illumination functionality through dimming control. This paper proposes a modulation scheme called "Spatial Intensity Modulation" (SIM), where the effective number of turned-on LEDs is employed for data modulation and dimming control in VLC systems. Unlike the conventional pulse-amplitude modulation (PAM), symbol intensity levels are not determined by the amplitude levels of a VLC signal from each LED, but by counting the number of turned-on LEDs, illuminating with a single amplitude level. Because the intensity of a SIM symbol and the target dimming level are determined solely in the spatial domain, the problems of conventional PAM-based VLC and related MIMO VLC schemes, such as unstable dimming control, non uniform illumination functionality, and burdens of channel prediction, can be solved. By varying the number and formation of turned-on LEDs around the target dimming level in time, the proposed SIM scheme guarantees homogeneous illumination over a target area. An analysis of the dimming capacity, which is the achievable communication rate under the target dimming level in VLC, is provided by deriving the turn-on probability to maximize the entropy of the SIM-based VLC system. In addition, a practical design of dimmable SIM scheme applying the multilevel inverse source coding (MISC) method is proposed. The simulation results under a range of parameters provide baseline data to verify the performance of the proposed dimmable SIM scheme and applications in real systems.

Pseudo-Randomized Frequency Carrier Modulation Scheme with Improved Harmonics Spectra Spreading Effects (고조파 스펙트럼 확산효과를 개선한 준 랜덤 주파수 캐리어 변조기법)

  • Kim, Jong-Nam;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.64-70
    • /
    • 2008
  • In case that conventional PRC(Pseudo-Randomized Frequency Carrier) modulation scheme is applied to a three-phase HBML(H-Bridge Multi-Level Inverter), the dominant harmonics spectra appear at twice switching frequency. In this paper, the dominant harmonics spectra spreading effect of the conventional PRC scheme was improved by using three stage MUXs(Multiplexers) and two triangular carriers with fixed frequency which has mutual relation of the twice frequency. To confirm the validity of the improved PRC scheme, the experiment were performed on a 1.5[kw] three-phase HBML based induction motor drives. And, the harmonics spectra of the conventional and improved PRC schemes are compared and discussed.

Design of AGC and DC Offset Remover for Cable Modem (케이블 모뎀을 위한 AGC 및 DC offset Remover 설계)

  • 김기윤;최형진
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.775-779
    • /
    • 1999
  • This paper presents design of AGC(Automatic Gain Control) and DC offset remover suitable for cable modem which makes use of QAM(Quadrature Amplitude Modulation) scheme. Since QAM has multi-level signal characteristic, for high-order QAM, the constellation is dense and the distance of decision boundary between adjacent symbols is short. So AGC and DC offset remover must be designed optionally for preventing performance degradation. AGC is designed into feedback type and is related to the STR(Symbol Timing Recovery)and Paff interpolation algorithm. Whereas AGC need to perform average power detection during many symbols by comparison with the reference power, DC offset remover uses only the instant polarity decision such that simple implementation can be achieved with good performance. Though the AGC and DC offset remover are simulated here only for 256 QAM scheme for convenience'sake, it can be applied to other multi-level QAM or PSK modulation scheme.

  • PDF

Convex Optimization Approach to Multi-Level Modulation for Dimmable Visible Light Communications under LED Efficiency Droop

  • Lee, Sang Hyun;Park, Il-Kyu;Kwon, Jae Kyun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • This paper deals with a design method and capacity loss of an efficient multi-level modulation scheme for dimmable visible light communications (VLC) systems that use light-emitting diodes (LEDs) with efficiency droop. To this end, the impact of such an impairment on dimmable VLC is addressed with respect to multi-level modulations based on pulse-amplitude modulation (PAM) via data-rate optimization formulation.

A study on the biorthogonally coded Q$^{2}$AM with constant envelope property (정진폭특성을 갖는 Birothogonal 부호로 부호화된 Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation)에 관한 연구)

  • 박인재;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2470-2480
    • /
    • 1996
  • The energy efficiency and bandwidth efficiency are two important criterion in designing a modulation scheme Especially the constant envelope property must be considered as in the non-linear channel tht exit, for example in the nonlinear amplifiers for satellite repeater. The Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation) is a new modulation scheme which combines the Q$^{2}$PSK(Quadrature Quadrature Phase Shift Keying) scheme which increases the signal space dimension and the QAM scheme which increases the bandwidth efficiency using the multi-level signal. The Q$^{2}$AM scheme has by far superior spectrum efficiency compared with the existing modulation schemes. Applying this scheme in the non-linear communication system increses the bandwidth efficiency but cannot envelop property. In this paper, a new system architecture is suggested which satisfies the large spectrum efficiency and constant envelope property by implementing the linear block coding prior to the Q$^{2}$AM modulation. the system has improved in performance by gaining the constant envelope and the additional coding gain. We able to observe the performance improvement of the suggested system(at BER=10$^{-5}$ ) of 4.4 dB for the 16-QAM and 0.7 dB for the Q$^{2}$PSK under the exact spectrum efficiency.

  • PDF

Power Efficient Modulation Scheme $CDM^2-MAP$ for Low Complexity and High Performance

  • Khuong Ho Van;Kong Hyung-Yun;Nam Doo-Hee
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Quadrature amplitude modulation-spread spectrum (QAM-SS) and code division multiplexing (CDM) are multi-level modulation schemes with high performance but they cause a large peak-average power ratio (PAPR). Therefore, this paper proposes a novel modulation scheme for high-rate transmission which follows a sequence of CDM-mapping-CDM not only to correct the above-mentioned problem but also offer a high flexibility in obtaining arbitrary multilevel modulation with very low implementation complexity and high performance.