All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.
International Journal of Advanced Culture Technology
/
v.6
no.3
/
pp.37-43
/
2018
This paper measures and maps multi-dimensional residential segregation of immigrants in Seoul metropolitan area at city/county/district level as well as town level, thereby adding to our understanding of the urban structure and its spatial distribution impacted by immigration. The perspective offered here focuses on the segregation spurred by transnational migrants and their urban settlement. By drawing population data for 79 city/county/district administrative units from the Korea Immigration Service, residential segregation of immigrants in Seoul metropolitan area is measured based on Massey & Denton's four segregation indices: evenness, exposure, concentration and clustering. The empirical findings suggest that Seoul metropolitan area is highly segregated and the areas showing hyper-segregation appear in Seoul city and Gyeonggi province. As immigrants are foreseen to continue to increase in the future, this research contributes both empirically and theoretically to preliminary research on spatial segregation of immigrants by showing how ethnic places are segregated spatially through ethnic networks that support the geographic concentration of minority groups.
This study proposes a multi-level data analysis approach to identify both superficial and latent relationships among variables in the data set obtained from a vocational rehabilitation (VR) services program of people with significant disabilities. At the first layer, data mining and statistical predictive models are used to extract the superficial relationships between dependent and independent variables. To supplement the findings and relationships from the analysis at the first layer, association rule mining algorithms at the second layer are employed to extract additional sets of interesting associative relationships among variables. Finally, nonlinear nonparametric canonical correlation analysis (NLCCA) along with clustering algorithm is employed to identify latent nonlinear relationships. Experimental outputs validate the usefulness of the proposed approach. In particular, the identified latent relationship indicates that disability types (i.e., physical and mental) and severity (i.e., severe, most severe, not severe) have a significant impact on the levels of self-esteem and self-confidence of people with disabilities. The identified superficial and latent relationships can be used to train education program designers and policy developers to maximize the outcomes of VR training programs.
Kim Jae-Hyun;Lee Jai-Yong;Kim Seog-Gyu;Doh Yoon-Mee;Park No-Seong
The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.6B
/
pp.534-543
/
2006
As the topology frequently varies, more cluster reconstructing is needed and also management overheads increase in the wireless ad hoc/sensor networks. In this paper, we propose a multi-hop clustering algorithm for wireless sensor network topology management using dynamic pre-clusterhead scheme to solve cluster reconstruction and load balancing problems. The proposed scheme uses weight map that is composed with power level and mobility, to choose pre-clusterhead and construct multi-hop cluster. A clusterhead has a weight map and threshold to hand over functions of clusterhead to pre-clusterhead. As a result of simulation, our algorithm can reduce overheads and provide more load balancing well. Moreover, our scheme can maintain the proper number of clusters and cluster members regardless of topology changes.
Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.
The smart substation is the heart of a transmission system, which is particularly emphasized as the most significant composition of smart grids in China. In order to assess the functionality performance of substation technologies, this paper presents methods used to identify the most promising solutions for smart substation design and to evaluate the technical levels of available technologies. The multi-index optimization model is presented to address the issue of smart substation planning. A mathematical model of the planning decision problem is established with multiple objectives consisting of economic, reliability, and green key indices, and many kinds of concerns including physical and environmentally friendly operations are formulated as a set of constraints. With respect to the assessment of the technical level regarding integration of advanced technologies into a substation, a modified grey whitenization weight function is adopted to structure a novel grey clustering method. The proposed grey clustering approach is used to overcome the difficulty of insufficient quantitative assessment capacity for traditional methods. The evaluation of technical effects provides the classification definition for the development phase and the maturity level of the smart substation. The effectiveness of the proposed approaches in planning decision-making and evaluation of construction efforts is demonstrated with case studies involving the actual smart substation projects of Wenchongkou substation in China Southern Power Grid (CSG) and Mengzi substation in State Grid Corporation of China (SGCC).
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.413-435
/
2018
Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.
The Journal of Korean Institute of Communications and Information Sciences
/
v.37
no.2C
/
pp.181-187
/
2012
Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.
Proceedings of the Korea Information Processing Society Conference
/
2007.11a
/
pp.525-528
/
2007
추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 추출한다. 이 때, 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.11
/
pp.1661-1670
/
2016
In this paper, we present a risk prediction system and customized evacuation pathfinding algorithm in fire scenarios. For the risk prediction, we apply a multi-level clustering mechanism using collected temperature at sensor nodes throughout the network in order to predict the temperature at the time that users actually evacuate. Based on the predicted temperature and its reliability, we suggest an evacuation pathfinding algorithm that finds a suitable evacuation path from a user's current location to the safest exit. Simulation results based on FDS(Fire Dynamics Simulator) of NIST for a wireless sensor network consisting of 47 stationary nodes for 1436.41 seconds show that our proposed prediction system achieves a higher accuracy by a factor of 1.48. Particularly for nodes in the most reliable group, it improves the accuracy by a factor of up to 4.21. Also, the customized evacuation pathfinding based on our prediction algorithm performs closely with that of the ground-truth temperature in terms of the ratio of safe nodes on the selected path, while outperforming the shortest-path evacuation with a factor of up to 12% in terms of a safety measure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.