• Title/Summary/Keyword: Multi-level Clustering

Search Result 57, Processing Time 0.022 seconds

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.

Examining the Residential Patterns of Urban Immigrants in Seoul Metropolitan Area

  • Kim, Hyejin;Lee, Jawon
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • This paper measures and maps multi-dimensional residential segregation of immigrants in Seoul metropolitan area at city/county/district level as well as town level, thereby adding to our understanding of the urban structure and its spatial distribution impacted by immigration. The perspective offered here focuses on the segregation spurred by transnational migrants and their urban settlement. By drawing population data for 79 city/county/district administrative units from the Korea Immigration Service, residential segregation of immigrants in Seoul metropolitan area is measured based on Massey & Denton's four segregation indices: evenness, exposure, concentration and clustering. The empirical findings suggest that Seoul metropolitan area is highly segregated and the areas showing hyper-segregation appear in Seoul city and Gyeonggi province. As immigrants are foreseen to continue to increase in the future, this research contributes both empirically and theoretically to preliminary research on spatial segregation of immigrants by showing how ethnic places are segregated spatially through ethnic networks that support the geographic concentration of minority groups.

Toward Successful Management of Vocational Rehabilitation Services for People with Disabilities: A Data Mining Approach

  • Kim, Yong Seog
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.371-384
    • /
    • 2012
  • This study proposes a multi-level data analysis approach to identify both superficial and latent relationships among variables in the data set obtained from a vocational rehabilitation (VR) services program of people with significant disabilities. At the first layer, data mining and statistical predictive models are used to extract the superficial relationships between dependent and independent variables. To supplement the findings and relationships from the analysis at the first layer, association rule mining algorithms at the second layer are employed to extract additional sets of interesting associative relationships among variables. Finally, nonlinear nonparametric canonical correlation analysis (NLCCA) along with clustering algorithm is employed to identify latent nonlinear relationships. Experimental outputs validate the usefulness of the proposed approach. In particular, the identified latent relationship indicates that disability types (i.e., physical and mental) and severity (i.e., severe, most severe, not severe) have a significant impact on the levels of self-esteem and self-confidence of people with disabilities. The identified superficial and latent relationships can be used to train education program designers and policy developers to maximize the outcomes of VR training programs.

A Dynamic Pre-Cluster Head Algorithm for Topology Management in Wireless Sensor Networks (무선 센서네트워크에서 동적 예비 클러스터 헤드를 이용한 효율적인 토폴로지 관리 방안에 관한 연구)

  • Kim Jae-Hyun;Lee Jai-Yong;Kim Seog-Gyu;Doh Yoon-Mee;Park No-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.534-543
    • /
    • 2006
  • As the topology frequently varies, more cluster reconstructing is needed and also management overheads increase in the wireless ad hoc/sensor networks. In this paper, we propose a multi-hop clustering algorithm for wireless sensor network topology management using dynamic pre-clusterhead scheme to solve cluster reconstruction and load balancing problems. The proposed scheme uses weight map that is composed with power level and mobility, to choose pre-clusterhead and construct multi-hop cluster. A clusterhead has a weight map and threshold to hand over functions of clusterhead to pre-clusterhead. As a result of simulation, our algorithm can reduce overheads and provide more load balancing well. Moreover, our scheme can maintain the proper number of clusters and cluster members regardless of topology changes.

Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification (계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.420-438
    • /
    • 2004
  • Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.

Assessing the Impact of Advanced Technologies on Utilization Improvement of Substations

  • Han, Dong;Yan, Zheng;Zhang, Dao-Tian;Song, Yi-Qun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1921-1929
    • /
    • 2015
  • The smart substation is the heart of a transmission system, which is particularly emphasized as the most significant composition of smart grids in China. In order to assess the functionality performance of substation technologies, this paper presents methods used to identify the most promising solutions for smart substation design and to evaluate the technical levels of available technologies. The multi-index optimization model is presented to address the issue of smart substation planning. A mathematical model of the planning decision problem is established with multiple objectives consisting of economic, reliability, and green key indices, and many kinds of concerns including physical and environmentally friendly operations are formulated as a set of constraints. With respect to the assessment of the technical level regarding integration of advanced technologies into a substation, a modified grey whitenization weight function is adopted to structure a novel grey clustering method. The proposed grey clustering approach is used to overcome the difficulty of insufficient quantitative assessment capacity for traditional methods. The evaluation of technical effects provides the classification definition for the development phase and the maturity level of the smart substation. The effectiveness of the proposed approaches in planning decision-making and evaluation of construction efforts is demonstrated with case studies involving the actual smart substation projects of Wenchongkou substation in China Southern Power Grid (CSG) and Mengzi substation in State Grid Corporation of China (SGCC).

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Attribute-based Multi-level Clustering for Collaborative Filtering (협동적 필터링을 위한 속성기반 다단계 클러스터링)

  • Kim, Taek-Hun;Yang, Sung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.525-528
    • /
    • 2007
  • 추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 추출한다. 이 때, 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.

Customized Evacuation Pathfinding through WSN-Based Monitoring in Fire Scenarios (WSN 기반 화재 상황 모니터링을 통한 대피 경로 도출 알고리즘)

  • Yoon, JinYi;Jin, YeonJin;Park, So-Yeon;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1661-1670
    • /
    • 2016
  • In this paper, we present a risk prediction system and customized evacuation pathfinding algorithm in fire scenarios. For the risk prediction, we apply a multi-level clustering mechanism using collected temperature at sensor nodes throughout the network in order to predict the temperature at the time that users actually evacuate. Based on the predicted temperature and its reliability, we suggest an evacuation pathfinding algorithm that finds a suitable evacuation path from a user's current location to the safest exit. Simulation results based on FDS(Fire Dynamics Simulator) of NIST for a wireless sensor network consisting of 47 stationary nodes for 1436.41 seconds show that our proposed prediction system achieves a higher accuracy by a factor of 1.48. Particularly for nodes in the most reliable group, it improves the accuracy by a factor of up to 4.21. Also, the customized evacuation pathfinding based on our prediction algorithm performs closely with that of the ground-truth temperature in terms of the ratio of safe nodes on the selected path, while outperforming the shortest-path evacuation with a factor of up to 12% in terms of a safety measure.