본 논문은 전이 영역에서 퍼지 클러스터링 알고리즘을 이용한 multi-level thresholding 방법을 제안한다. 대부분의 임계치 기반 영상 분할은 영상의 히스토 그램 분포를 기반으로 임계치를 결정한다. 그러므로 많은 처리시간과 기억공간을 요구할 뿐만 아니라 복잡하고 무분별한 히스토 그램 분포를 가지는 실영상에서의 임계치 결정에는 어려움이 있다. 본 논문에서는 영상의 대표적인 성분들로 구성된 전이 영역을 추출한 후 퍼지 클러스터링 알고리즘에 의해 최적의 임계치를 결정한다. 전이 영역을 추출하기 위해 이용되는 지역적 엔트로피는 잡음에 강건하며 영상에 내재된 정보를 잘 표현한다는 특성을 가진다. 그리고 퍼지 클러스터링 알고리즘은 복잡하고 무분별한 분포의 실영상에 대해서도 정확히 임계치를 설정할 수 있으며 multi-level thresholding으로 쉽게 확장이 가능하다. 다양한 실영상을 대상으로 실험한 결과, 제안한 방법이 기존의 방법보다 향상된 성능을 가짐을 보였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권4호
/
pp.246-253
/
2016
Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.
Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권1호
/
pp.157-176
/
2011
An interest-based P2P constructs the peer connections based on similarities for efficient search of resources. A clustering technique using peer similarities as data is an effective approach to group the most relevant peers. However, the separation of groups produced from clustering lowers the scalability of a P2P network. Moreover, the interest-based approach is only concerned with user-level grouping where topology-awareness on the physical network is not considered. This paper proposes an efficient scalable search for the interest-based P2P system. A scalable multi-ring (SMR) based on fuzzy clustering handles the grouping of relevant peers and the proposed scalable search utilizes the SMR for scalability of peer queries. In forming the multi-ring, a minimized route function is used to determine the shortest route to connect peers on the physical network. Performance evaluation showed that the SMR acquired an accurate peer grouping and improved the connectivity rate of the P2P network. Also, the proposed scalable search was efficient in finding more replicated files throughout the peer network compared to other traditional P2P approaches.
High sped messaging layer for application's feeling of low level network performance is needed by Clustering System based on high speed network fabrics. It should have the mechanism to directly pass messages between network card and application space, and provide flexible affodabilities for many diverse applications. In this paper, CROWN (Clustering Resources On Workstations' Network) which is designed and implemented for multi-purpose clustering system will be introduced briefly, and CLCP(CROWN Lean Communication Primitives)which is the high speed messaging layer for CROWN will be followed. CLCP consists of a firmware for controlling Myrinet card, device drier, and user libraries. CLCP supports various application domains as a result of pooling and interrupt receive mechanism. In case of polling based receive, 8 bytes short message, and no other process, CLCP has 262 micro-second response time between two nodes, and IM bytes large message, it shows 442Mbps bandwidth.
본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.
본 논문에서는 화자독립 가변어휘 핵심어 검출기의 성능을 개선하기 위하여 두 가지의 새로운 비핵심어 모델링 방법을 제안한다. 첫째는 K-means 알고리즘 기반 monophone 군집화 방법을 개선하기 위해 monophone을 state단위로 결정트리를 기반으로 군집화하여 비핵심어를 모델링하는 방법이다. 둘째는 single state multiple mixture 방법을 개선하기 위해 음절단위 multi-state multiple mixture 방법으로 모델링하는 방법이다. 실험에서 ETRI 표준 한국어 공통음성 단어 DB를 이용하여 트라이폰 모델을 훈련하였고, 훈련에 사용하지 않은 음성데이터를 이용하여 핵심어 검출closed 테스트를 수행하였다. 그리고 사무실 환경에서 4명의 화자가 각각 100문장씩 발성한 400문장의 음성데이터를 이용하여 100단어 핵심어 검출 open 테스트를 수행하였다. 실험 결과 결정트리기반 상태 군집화 방법이 기존의 K-means 알고리듬 기반 monophone clustering 방법보다 핵심어 검출 성능이 28%/29%(closed/open test) 향상되었다 그리고 음절단위 multi-state multiple mixture 방법이 비핵심어 전체를 single state 모델로 구성하는 방법보다 핵심어 검출 성능이 22%/2%(closed/open test) 향상됨으로써 본 논문에서 제안한 두 가지 알고리듬이 우수한 결과를 나타내었다
적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.
최근 무선 센서 네트워크(WSN : Wireless Sensor Network)에서 센서노드의 에너지 소모를 균등화 하고 효율성을 향상시켜 전제 네트워크의 수명을 최대화하기 위한 다양한 계층적 라우팅 프로토콜들이 제안되고 있다. 특히, 멀티-홉 기법이 향상된 에너지 효율성과 실제 적용 가능한 모델로 많은 각광을 받고 있다. 멀티-홉 기법에서는 센서 노드사이 거리에 따라 전송 에너지를 효율적으로 조절하는 것이 가능하다고 가정한다. 이 논문에서는 대표적인 클러스터 알고리즘인 LEACH에 대하여 분석하고 이 알고리즘의 단점을 보완하고 에너지를 효율적으로 사용할 수 있는 지역-중앙 클러스터 라우팅 알고리즘을 제안한다. 제안한 클러스터 라우팅 알고리즘과 LEACH의 성능을 시뮬레이션을 통해 성능을 평가하고 분석하고 NS-2 시뮬레이션을 이용하여 성능 결과를 제시한다.
최근 무선 센서 네트워크(WSN : Wireless Sensor Network)에서 센서노드의 에너지 소모 균등성과 효율성을 향상시켜 전제 네트워크의 수명을 최대화하기 위한 다양한 계층적 라우팅 프로토콜들이 제안되고 있다. 특히, 멀티홉기법이 향상된 에너지 효율성과 실제 적용 가능한 모델로 큰 각광받고 있다. 멀티-홉 기법에서는 센서 노드사이 거리에 따라 발송 에너지 능동조절 가능하다고 가정한다. 그러나 무선센서의 물리적 특성을 고려해보면 멀티-홉 기법의 이 가정은 현재 기술로 실제 실현하기 어렵다. 이 논문에서는 센서노드의 전파범위를 기반으로 에너지 효율성을 향상시킨 저 전력 클러스터링 기법을 제안한다. 제안기법은 에너지 효율적이고 기존기법보다 실제 무선센서네트워크에 적용하기 용이하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.