• Title/Summary/Keyword: Multi-level Clustering

Search Result 56, Processing Time 0.03 seconds

Multi-level Thresholding using Fuzzy Clustering Algorithm in Local Entropy-based Transition Region (지역적 엔트로피 기반 전이 영역에서 퍼지 클러스터링 알고리즘을 이용한 Multi-Level Thresholding)

  • Oh, Jun-Taek;Kim, Bo-Ram;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.587-594
    • /
    • 2005
  • This paper proposes a multi-level thresholding method for image segmentation using fuzzy clustering algorithm in transition region. Most of threshold-based image segmentation methods determine thresholds based on the histogram distribution of a given image. Therefore, the methods have difficulty in determining thresholds for real-image, which has a complex and undistinguished distribution, and demand much computational time and memory size. To solve these problems, we determine thresholds for real-image using fuzzy clustering algorithm after extracting transition region consisting of essential and important components in image. Transition region is extracted based on Inか entropy, which is robust to noise and is well-known as a tool that describes image information. And fuzzy clustering algorithm can determine optimal thresholds for real-image and be easily extended to multi-level thresholding. The experimental results demonstrate the effectiveness of the proposed method for performance.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

Scalable Search based on Fuzzy Clustering for Interest-based P2P Networks

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.157-176
    • /
    • 2011
  • An interest-based P2P constructs the peer connections based on similarities for efficient search of resources. A clustering technique using peer similarities as data is an effective approach to group the most relevant peers. However, the separation of groups produced from clustering lowers the scalability of a P2P network. Moreover, the interest-based approach is only concerned with user-level grouping where topology-awareness on the physical network is not considered. This paper proposes an efficient scalable search for the interest-based P2P system. A scalable multi-ring (SMR) based on fuzzy clustering handles the grouping of relevant peers and the proposed scalable search utilizes the SMR for scalability of peer queries. In forming the multi-ring, a minimized route function is used to determine the shortest route to connect peers on the physical network. Performance evaluation showed that the SMR acquired an accurate peer grouping and improved the connectivity rate of the P2P network. Also, the proposed scalable search was efficient in finding more replicated files throughout the peer network compared to other traditional P2P approaches.

Implementation of High Performance Messaging Layer for Multi-purpose Clustering System (다목적 클러스터링 시스템을 위한 고속 메시징 계층 구현)

  • Park, Jun-Hui;Mun, Gyeong-Deok;Kim, Tae-Geun;Jo, Gi-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.909-922
    • /
    • 2000
  • High sped messaging layer for application's feeling of low level network performance is needed by Clustering System based on high speed network fabrics. It should have the mechanism to directly pass messages between network card and application space, and provide flexible affodabilities for many diverse applications. In this paper, CROWN (Clustering Resources On Workstations' Network) which is designed and implemented for multi-purpose clustering system will be introduced briefly, and CLCP(CROWN Lean Communication Primitives)which is the high speed messaging layer for CROWN will be followed. CLCP consists of a firmware for controlling Myrinet card, device drier, and user libraries. CLCP supports various application domains as a result of pooling and interrupt receive mechanism. In case of polling based receive, 8 bytes short message, and no other process, CLCP has 262 micro-second response time between two nodes, and IM bytes large message, it shows 442Mbps bandwidth.

  • PDF

Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering (공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • This study propose a image processing system of unsupervised analysis. This system integrates low-level segmentation and high-level classification. The segmentation and classification are conducted respectively with and without spatial constraints on merging by a hierarchical clustering procedure. The clustering utilizes the local mutually closest neighbors and multi-window operation of a pyramid-like structure. The proposed system has been evaluated using simulated images and applied for the LANDSATETM+ image collected from Youngin-Nungpyung area on the Korean Peninsula.

Non-Keyword Model for the Improvement of Vocabulary Independent Keyword Spotting System (가변어휘 핵심어 검출 성능 향상을 위한 비핵심어 모델)

  • Kim, Min-Je;Lee, Jung-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.319-324
    • /
    • 2006
  • We Propose two new methods for non-keyword modeling to improve the performance of speaker- and vocabulary-independent keyword spotting system. The first method is decision tree clustering of monophone at the state level instead of monophone clustering method based on K-means algorithm. The second method is multi-state multiple mixture modeling at the syllable level rather than single state multiple mixture model for the non-keyword. To evaluate our method, we used the ETRI speech DB for training and keyword spotting test (closed test) . We also conduct an open test to spot 100 keywords with 400 sentences uttered by 4 speakers in an of fce environment. The experimental results showed that the decision tree-based state clustering method improve 28%/29% (closed/open test) than the monophone clustering method based K-means algorithm in keyword spotting. And multi-state non-keyword modeling at the syllable level improve 22%/2% (closed/open test) than single state model for the non-keyword. These results show that two proposed methods achieve the improvement of keyword spotting performance.

Infrared Image Segmentation by Extracting and Merging Region of Interest (관심영역 추출과 통합에 의한 적외선 영상 분할)

  • Yeom, Seokwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.493-497
    • /
    • 2016
  • Infrared (IR) imaging is capable of detecting targets that are not visible at night, thus it has been widely used for the security and defense system. However, the quality of the IR image is often degraded by low resolution and noise corruption. This paper addresses target segmentation with the IR image. Multiple regions of interest (ROI) are extracted by the multi-level segmentation and targets are segmented from the individual ROI. Each level of the multi-level segmentation is composed of a k-means clustering algorithm an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering algorithm initializes the parameters of the Gaussian mixture model (GMM) and the EM algorithm iteratively estimates those parameters. Each pixel is assigned to one of clusters during the decision. This paper proposes the selection and the merging of the extracted ROIs. ROI regions are selectively merged in order to include the overlapped ROI windows. In the experiments, the proposed method is tested on an IR image capturing two pedestrians at night. The performance is compared with conventional methods showing that the proposed method outperforms others.

An Energy Efficient Routing Algorithm based on Center of Local Clustering in Wireless Sensor Networks (무선센서 네트워크에서의 지역-중앙 클러스터 라우팅 방법)

  • He, Jin Ming;Rhee, Chung-Sei
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2014
  • Recently, lot of researches for the multi-level protocol have been done to balance the sensor node energy consumption of WSN and improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been proposed to improve energy efficiency and apply it to WSN protocol. In this paper, we analyze LEACH algorithm and propose new method based on center of local clustering routing algorithm in wireless sensor networks. We also perform NS-2 simulation to show the performance of our model.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in WSN (WSN에서 전파범위 기반의 저 전력 클러스터링 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.75-82
    • /
    • 2015
  • Recently, lot of researches on multi-level protocol have been done to balance the sensor node energy consumption of WSN and to improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been studied to improve energy efficiency and apply it in real system. In multi-hop protocol, we assume that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this. In this paper, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, the proposed protocol is energy efficient and can be effectively used in the wireless sensing network.