• 제목/요약/키워드: Multi-learning System

검색결과 631건 처리시간 0.025초

인공신경망과 귀납학습을 이용한 상태 의존적 유연생산시스템 스케쥴링 지식의 획득과 정제 (Acquisition and Refinement of State Dependent FMS Scheduling Knowledge Using Neural Network and Inductive Learning)

  • 김창욱;민형식;이영해
    • 지능정보연구
    • /
    • 제2권2호
    • /
    • pp.69-83
    • /
    • 1996
  • The objective of this research is to develop a knowledge acquisition and refinement method for a multi-objective and multi-decision FMS scheduling problem. A competitive neural network and an inductive learning algorithm are integrated to extract and refine necessary scheduling knowledge from simulation outputs. The obtained scheduling knowledge can assist the FMS operator in real-time to decide multiple decisions simultaneously, while maximally meeting multiple objective desired by the FMS operator. The acquired scheduling knowledge for an FMS scheduling problem is tested by comparing the desired and the simulated values of the multiple objectives. The result show that the knowledge acquisition and refinement method is effective for the multi-objective and multi-decision FMS scheduling problems.

  • PDF

Aspect-based Sentiment Analysis of Product Reviews using Multi-agent Deep Reinforcement Learning

  • M. Sivakumar;Srinivasulu Reddy Uyyala
    • Asia pacific journal of information systems
    • /
    • 제32권2호
    • /
    • pp.226-248
    • /
    • 2022
  • The existing model for sentiment analysis of product reviews learned from past data and new data was labeled based on training. But new data was never used by the existing system for making a decision. The proposed Aspect-based multi-agent Deep Reinforcement learning Sentiment Analysis (ADRSA) model learned from its very first data without the help of any training dataset and labeled a sentence with aspect category and sentiment polarity. It keeps on learning from the new data and updates its knowledge for improving its intelligence. The decision of the proposed system changed over time based on the new data. So, the accuracy of the sentiment analysis using deep reinforcement learning was improved over supervised learning and unsupervised learning methods. Hence, the sentiments of premium customers on a particular site can be explored to other customers effectively. A dynamic environment with a strong knowledge base can help the system to remember the sentences and usage State Action Reward State Action (SARSA) algorithm with Bidirectional Encoder Representations from Transformers (BERT) model improved the performance of the proposed system in terms of accuracy when compared to the state of art methods.

다문화 가정 학부모를 위한 한한변환 기반 학습콘텐츠 관리 시스템 (Korean to Korean Translation Based Learning Contents Management System for Parents of Multi-Cultural Family)

  • 강윤희;강명주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 2017
  • 다문화 가정의 정보 격차의 주요 원인인 언어장벽은 다문화 가정 자녀의 낮은 교육수준과 높은 연관성을 가지며, 경제불균형을 높임으로써 추가적인 사회문제화가 될 것으로 예상된다. 다문화가정 학부모는 디지털 기기에 대한 접근성과 자료 활용 능력이 일반국민에 비해 현저하게 떨어지는 정보격차로 인해 기존의 교육 콘텐츠의 효과적 활용은 제약점을 갖고 있다. 이러한 제약점을 해결하기 위해서는 학습자의 이해수준에 적합한 콘텐츠를 제공하는 맞춤형 학습콘텐츠 지원체제의 구축은 필수적이다. 이 논문에서는 다문화가정 학부모의 정보격차 해소를 위한 한한변환 기반 학습콘텐츠 시스템을 설계하고 이를 위한 사용자 맞춤형 학습콘텐츠 지원을 위한 한한변환 시스템의 프로토타입을 결과로 제시한다.

Autonomous and Asynchronous Triggered Agent Exploratory Path-planning Via a Terrain Clutter-index using Reinforcement Learning

  • Kim, Min-Suk;Kim, Hwankuk
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.181-188
    • /
    • 2022
  • An intelligent distributed multi-agent system (IDMS) using reinforcement learning (RL) is a challenging and intricate problem in which single or multiple agent(s) aim to achieve their specific goals (sub-goal and final goal), where they move their states in a complex and cluttered environment. The environment provided by the IDMS provides a cumulative optimal reward for each action based on the policy of the learning process. Most actions involve interacting with a given IDMS environment; therefore, it can provide the following elements: a starting agent state, multiple obstacles, agent goals, and a cluttered index. The reward in the environment is also reflected by RL-based agents, in which agents can move randomly or intelligently to reach their respective goals, to improve the agent learning performance. We extend different cases of intelligent multi-agent systems from our previous works: (a) a proposed environment-clutter-based-index for agent sub-goal selection and analysis of its effect, and (b) a newly proposed RL reward scheme based on the environmental clutter-index to identify and analyze the prerequisites and conditions for improving the overall system.

다차원 학습경로 패턴 분석 시스템의 설계 및 구현 (Design and Implementation of Multi-dimensional Learning Path Pattern Analysis System)

  • 백장현;김영식
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.461-470
    • /
    • 2005
  • 학습자 스스로 학습내용, 학습방법, 학습순서 등을 결정하고 재구조화할 수 있는 학습자 통제 환경에서는 학습자의 특성을 고려한 개별화 학습이 가능하다. 본 연구에서는 웹 기반 교수 학습 과정에서 중요시되고 있는 학습자 특성 변인 중에서 학습자의 학습경로 패턴을 Apriori 알고리즘을 이용하여 분석하고, 유사한 학습경로 패턴을 갖는 학습자들로 그룹화하였다. 이를 기반으로 학습자 개인에게 학습경로, 학습내용. 학습매체, 보조학습콘텐츠, 자료제시유형 등을 다차원적으로 제공하기 위한 다차원 학습경로 패턴 분석 시스템을 설계하고 구현하였다. 개발된 시스템에 대하여 만족도 검사를 실시한 결과 보조학습콘텐츠에 대한 만족도가 "매우 만족" $24.5\%$, "만족" $35.17\%$로 가장 높게 나타났다. 학습자 수준별로는 하위수준의 학습자에 대한 만족도가 "매우 만족" $20.2\%$, "만족" $31.2\%$로 상위수준의 학습자 "매우 만족" $18.4\%$, "만족" $28.54\%$ 보다 높게 나타났다. 개발된 시스템은 드릴-업, 드릴-다운 등의 OLAP 기술을 이용하여 학습자들에게 다양한 각도로 다차원적으로 의미 있는 정보를 제공할 것으로 기대된다.

A Study of Collaborative and Distributed Multi-agent Path-planning using Reinforcement Learning

  • Kim, Min-Suk
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.9-17
    • /
    • 2021
  • 동적 시스템 환경에서 지능형 협업 자율 시스템을 위한 기계학습 기반의 다양한 방법들이 연구 및 개발되고 있다. 본 연구에서는 분산 노드 기반 컴퓨팅 방식의 자율형 다중 에이전트 경로 탐색 방법을 제안하고 있으며, 지능형 학습을 통한 시스템 최적화를 위해 강화학습 방법을 적용하여 다양한 실험을 진행하였다. 강화학습 기반의 다중 에이전트 시스템은 에이전트의 연속된 행동에 따른 누적 보상을 평가하고 이를 학습하여 정책을 개선하는 지능형 최적화 기계학습 방법이다. 본 연구에서 제안한 방법은 강화학습 기반 다중 에이전트 최적화 경로 탐색 성능을 높이기 위해 학습 초기 경로 탐색 방법을 개선한 최적화 방법을 제안하고 있다. 또한, 분산된 다중 목표를 구성하여 에이전트간 정보 공유를 이용한 학습 최적화를 시도하였으며, 비동기식 에이전트 경로 탐색 기능을 추가하여 실제 분산 환경 시스템에서 일어날 수 있는 다양한 문제점 및 한계점에 대한 솔루션을 제안하고자 한다.

다면적 평가를 통한 교육성과 평가도구 개발 및 분석연구 (Practical Measurement on Education Outcome Through Multi-Evaluations)

  • 백란
    • 공학교육연구
    • /
    • 제15권6호
    • /
    • pp.98-102
    • /
    • 2012
  • This paper diagnose subjects and measures the learning ability of students based on the goal of developing an assessment tool for education productivity based on multi-aspect evaluation conducted by ICEE at Honam University. Furthermore, develop an assessment tool for education productivity that provides a motive to bring detailed improvements in teaching methods through the diagnosis. In addition, a method for compensating the issues and improving the quality of subject is suggested to develop learning ability of students through applying the assessment tool. An integrated operated system of CQI is desired to be built along with quality improvement of education through measuring academic quality by studying the methods for enhancing academic and learning ability achievement from analysis of the curriculum provided in the "ABEEK program". Through this study the current state of education productivity is presented through analyzing the difference between students who participated in the "ABEEK program" and who did not participate, and operating a comparison between the student's comprehension on their majors and liberal arts by the multi-aspect evaluation that has been conducted for 2 years.

머신러닝 기반 멀티모달 센싱 IoT 플랫폼 리소스 관리 지원 (Machine learning-based Multi-modal Sensing IoT Platform Resource Management)

  • 이성찬;성낙명;이석준;윤재석
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a machine learning-based method for supporting resource management of IoT software platforms in a multi-modal sensing scenario. We assume that an IoT device installed with a oneM2M-compatible software platform is connected with various sensors such as PIR, sound, dust, ambient light, ultrasonic, accelerometer, through different embedded system interfaces such as general purpose input output (GPIO), I2C, SPI, USB. Based on a collected dataset including CPU usage and user-defined priority, a machine learning model is trained to estimate the level of nice value required to adjust according to the resource usage patterns. The proposed method is validated by comparing with a rule-based control strategy, showing its practical capability in a multi-modal sensing scenario of IoT devices.

다계층 e-러닝 시스템의 설계 (A Design of Multi-tier e-Learning System)

  • 고일석;나윤지
    • 한국사이버테러정보전학회:학술대회논문집
    • /
    • 한국사이버테러정보전학회 2004년도 제1회 춘계학술발표대회
    • /
    • pp.97-101
    • /
    • 2004
  • 본 연구에서는 웹 기반 방식의 상호작용성과 적웅성을 유지하면서도 오프라인 기반 방식의 높은 수준의 다양한 멀티미디어 서비스를 제공할 수 있는 다계층 e-러닝시스템을 설계하였다. 실험결과 제안 시스템이 기존의 방식에 비해 멀티미디어서비스 및 사용자 편의성, 적응성, 상호작용성을 개선하였음을 확인할 수 있었다.

  • PDF

다중 신경망을 이용한 차량 번호판의 자동인식 시스템 (Automatic Recognition System for Number Plate of Car using Multi Neural Network)

  • 박상후;최규종;안두성
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.93-99
    • /
    • 2001
  • This paper presents the automatic recognition system for car number plate. In our country, two types of number plate pattern is used. The one is old type of number plate, the other is new type of number plate. To recognize both new and old type number plates, the system must have flexibility. Therefore, in this paper, automatic recognition system is developed by use of the neural network for good adaptation, good generalization, and modulation. And because the number plate is made of three codes, the multi neural network consists of three networks. Neural network is teamed by GDR(Generalized Delta learning Rule) and it is verified the effectiveness of the method through experimental results.

  • PDF