• Title/Summary/Keyword: Multi-layer neural network

Search Result 516, Processing Time 0.028 seconds

Design of a Deep Neural Network Model for Image Caption Generation (이미지 캡션 생성을 위한 심층 신경망 모델의 설계)

  • Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose an effective neural network model for image caption generation and model transfer. This model is a kind of multi-modal recurrent neural network models. It consists of five distinct layers: a convolution neural network layer for extracting visual information from images, an embedding layer for converting each word into a low dimensional feature, a recurrent neural network layer for learning caption sentence structure, and a multi-modal layer for combining visual and language information. In this model, the recurrent neural network layer is constructed by LSTM units, which are well known to be effective for learning and transferring sequence patterns. Moreover, this model has a unique structure in which the output of the convolution neural network layer is linked not only to the input of the initial state of the recurrent neural network layer but also to the input of the multimodal layer, in order to make use of visual information extracted from the image at each recurrent step for generating the corresponding textual caption. Through various comparative experiments using open data sets such as Flickr8k, Flickr30k, and MSCOCO, we demonstrated the proposed multimodal recurrent neural network model has high performance in terms of caption accuracy and model transfer effect.

Time-Varying Two-Phase Optimization and its Application to neural Network Learning (시변 2상 최적화 및 이의 신경회로망 학습에의 응용)

  • Myeong, Hyeon;Kim, Jong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

The Structure of Boundary Decision Using the Back Propagation Algorithms (역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구)

  • Lee, Ji-Young
    • The Journal of Information Technology
    • /
    • v.8 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

A neural network solver for differential equations

  • Wang, Qianyi;Aoyama, Tomoo;Nagashima, Umpei;Kang, Eui-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.88.4-88
    • /
    • 2001
  • In this paper, we propose a solver for differential equations, using a multi-layer neural network. The multi-layer neural network is a transformer function originally where the function is differential and the explicit representation has been developed. The learning determines the response of neural networks; however, the response is not equal to the output values. The differential relations are also the response. The differential conditions can be also set as teaching data; therefore, there is a possibility to reach a new solver for the differential equations. Since it is unknown how to define the input data for the neural network solver during long terms, we could not derive the expressions. Recently, the analogue type neural network is known and it transforms any vector to another The "any" must be...

  • PDF

Evaluation of existing bridges using neural networks

  • Molina, Augusto V.;Chou, Karen C.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.187-209
    • /
    • 2002
  • The infrastructure system in the United States has been aging faster than the resource available to restore them. Therefore decision for allocating the resources is based in part on the condition of the structural system. This paper proposes to use neural network to predict the overall rating of the structural system because of the successful applications of neural network to other fields which require a "symptom-diagnostic" type relationship. The goal of this paper is to illustrate the potential of using neural network in civil engineering applications and, particularly, in bridge evaluations. Data collected by the Tennessee Department of Transportation were used as "test bed" for the study. Multi-layer feed forward networks were developed using the Levenberg-Marquardt training algorithm. All the neural networks consisted of at least one hidden layer of neurons. Hyperbolic tangent transfer functions were used in the first hidden layer and log-sigmoid transfer functions were used in the subsequent hidden and output layers. The best performing neural network consisted of three hidden layers. This network contained three neurons in the first hidden layer, two neurons in the second hidden layer and one neuron in the third hidden layer. The neural network performed well based on a target error of 10%. The results of this study indicate that the potential for using neural networks for the evaluation of infrastructure systems is very good.

A Multi-layer Bidirectional Associative Neural Network with Improved Robust Capability for Hardware Implementation (성능개선과 하드웨어구현을 위한 다층구조 양방향연상기억 신경회로망 모델)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.159-165
    • /
    • 1994
  • In this paper, we propose a multi-layer associative neural network structure suitable for hardware implementaion with the function of performance refinement and improved robutst capability. Unlike other methods which reduce network complexity by putting restrictions on synaptic weithts, we are imposing a requirement of hidden layer neurons for the function. The proposed network has synaptic weights obtainted by Hebbian rule between adjacent layer's memory patterns such as Kosko's BAM. This network can be extended to arbitary multi-layer network trainable with Genetic algorithm for getting hidden layer memory patterns starting with initial random binary patterns. Learning is done to minimize newly defined network error. The newly defined error is composed of the errors at input, hidden, and output layers. After learning, we have bidirectional recall process for performance improvement of the network with one-shot recall. Experimental results carried out on pattern recognition problems demonstrate its performace according to the parameter which represets relative significance of the hidden layer error over the sum of input and output layer errors, show that the proposed model has much better performance than that of Kosko's bidirectional associative memory (BAM), and show the performance increment due to the bidirectionality in recall process.

  • PDF

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

A New Type of the Elmaln Neural Network (새로운 형태의 Elman 신경회로망)

  • 최우승;김주동
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.62-67
    • /
    • 1999
  • The neural network is a static network that consists of a number of layer: input layer, output layer and one or more hidden layer connected in a feed forward way. The popularity of neural network appear to be its ability of learning and approximation capability. The Elman Neural Network proposed the J. Elman, is a type of recurrent network. Is has the feedback links from hidden layer to context layer. So Elman Neural Network is the better performance than the neural network. In this paper. we propose the Modified Elman Neural Network. The structure of a MENN is based on the basic ENN. The recurrency of the network is due to the feedback links from the output layer and the hidden layer to the context layer. In order to certify the usefulness of the proposed method, the MENN apply to the X-Y cartesian tracking system. Simulation shows that the proposed MENN method is better performance than the multi layer neural network and ENN.

  • PDF

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

One-chip determinism multi-layer neural network on FPGA

  • Suematsu, Ryosuke;Shimizu, Ryosuke;Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89.4-89
    • /
    • 2002
  • $\textbullet$ Field Programmable Gate Array $\textbullet$ flexible hardware $\textbullet$ neural network $\textbullet$ determinism learning $\textbullet$ multi-valued logic $\textbullet$ disjunctive normal form $\textbullet$ multi-dimensional exclusive OR

  • PDF