• 제목/요약/키워드: Multi-layer neural network

검색결과 516건 처리시간 0.032초

신경회로망을 이용한 염색체 영상의 최적 패턴 분류기 구현 (Implementation on Optimal Pattern Classifier of Chromosome Image using Neural Network)

  • 장용훈;이권순;정형환;엄상희;이영우;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.290-294
    • /
    • 1997
  • Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.

  • PDF

신경회로망을 이용한 원전SG 세관 결함크기 예측 (Prediction of Defect Size of Steam Generator Tube in Nuclear Power Plant Using Neural Network)

  • 한기원;조남훈;이향범
    • 비파괴검사학회지
    • /
    • 제27권5호
    • /
    • pp.383-392
    • /
    • 2007
  • 본 논문에서는 신경회로망을 이용하여 원자력 발전소 증기발생기 세관의 결함 깊이와 폭을 예측하는 연구를 수행한다. 결함 크기 추정을 위하여 우선, I-In 형태, I-Out 형태, V-In 형태, V-Out 형태의 4가지 결함형상에 대한 와전류탐상시험(ECT) 신호를 생성한다. 특히, 유한요소법에 기반한 수치해석 기법을 이용하여 여러 가지 폭과 깊이를 갖는 결함 400개의 ECT 신호를 생성한다. 이와 같이 생성된 ECT 신호로부터, 결함 크기와 폭을 예측하기 위한 새로운 특징벡터를 추출하는데, 이 특징벡터에는 최대 임피던스 값을 갖는 점과 최대 임피던스값의 1/2의 값을 갖는 점 사이의 위상각이 포함된다. 추출된 특징벡터를 이용하여 결함의 크기를 예측하기 위해서 하나의 은닉층을 갖는 다층퍼셉트론을 이용하였다. 컴퓨터 모의실험 연구를 통하여 제안된 방법이 우수한 예측성능을 갖는다는 것을 보였다.

지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명 (System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network)

  • 정길도;홍동표
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

Front Points Tracking in the Region of Interest with Neural Network in Electrical Impedance Tomography

  • Seo, K.H.;Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.118-121
    • /
    • 2003
  • In the conventional boundary estimation in EIT (Electrical Impedance Tomography), the interface between anomalies and background is expressed in usual as Fourier series and the boundary is reconstructed by obtaining the Fourier coefficients. This paper proposes a method for the boundary estimation, where the boundary of anomaly is approximated as the interpolation of front points located discretely along the boundary and is imaged by tracking the points in the region of interest. In the solution to the inverse problem to estimate the front points, the multi-layer neural network is introduced. For the verification of the proposed method, numerical experiments are conducted and the results indicate a good performance.

  • PDF

이동로봇용 적외선 레인지 파인더센서의 특성분석 및 비선형 편향 오차 보정에 관한 연구 (A study on the characteristic analysis and correction of non-linear bias error of an infrared range finder sensor for a mobile robot)

  • 하윤수;김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.641-647
    • /
    • 2003
  • The use of infrared range-finder sensor as the environment recognition system for mobile robot have the advantage of low sensing cost compared with the use of other vision sensor such as laser finder CCD camera. However, it is not easy to find the previous works on the use of infrared range-finder sensor for a mobile robot because of the non-linear characteristic of that. This paper describes the error due to non-linearity of a sensor and the correction of it using neural network. The neural network consists of multi-layer perception and Levenberg-Marquardt algorithm is applied to learning it. The effectiveness of the proposed algorithm is verified from experiment.

신경망이론에 의한 비중심T분포 확률계산 (Computation of Noncentral T Probabilities using Neural Network Theory)

  • 구선희
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.177-183
    • /
    • 1997
  • 비 중심t분포의 누적함수는 두 정규모집단에서 모평균의 동일성 검정에서 검정력 계산 및 모 평균에 대한 표준편차의 비에 대하여 신뢰구간을 계산할 때 요구된다. 본 논문에서는 비중심t분포의 누적함수 계산에 신경망 이론을 적용하였다. 신경망은 다 층 퍼셉트론이며 학습과정은 역전파 학습알고리즘이다. Fisher가 제시한 확률값과 신 경망이론에 의하여 계산한 결과를 비교하였다.

  • PDF

일반화된 회귀신경망과 유전자 알고리즘을 이용한 식각 마이크로 트렌치 모델링 (Modeling of etch microtrenching using generalized regression neural network and genetic algorithm)

  • 이덕우;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.27-29
    • /
    • 2005
  • Using a generalized regression neural network, etch microtrenching was modeled. All neurons in the pattern layer were equipped with multi-factored spreads and their complex effects on the prediction performance were optimized by means of a genetic algorithm. For comparison, GRNN model was constructed in a conventional way. Comparison result revealed that GA-GRNN model was more accurate than GRNN model by about 30%. The microtrenching data were collected during the etching of silicon oxynitride film and the etch process was characterized by a statistical experimental design.

  • PDF

신경망과 실험계획법을 이용한 절삭력 예측 (Prediction of Cutting Force using Neural Network and Design of Experiments)

  • 이영문;최봉환;송태성;김선일;이동식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

계층형 신경회로망을 이용한 염색체 핵형 분류 (Karyotype Classification of Chromosome Using the Hierarchical Neu)

  • 장용훈;이영진;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.555-559
    • /
    • 1998
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis have been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, We proposed an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted four morphological features parameters such as centromeric index (C.I.), relative length ratio(R.L.), relative area ratio(R.A.) and chromosome length(C.L.). These Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results shown that the chromosome classification error was reduced much more than that of the other classification methods.

  • PDF

활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교 (Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions)

  • 김마가;최진용;방재홍;윤푸른;김귀훈
    • 한국농공학회논문집
    • /
    • 제63권1호
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.