• 제목/요약/키워드: Multi-layer neural network

검색결과 514건 처리시간 0.026초

불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발 (Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification)

  • 문현구;이철욱
    • 터널과지하공간
    • /
    • 제3권1호
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF

오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색 (Searching a global optimum by stochastic perturbation in error back-propagation algorithm)

  • 김삼근;민창우;김명원
    • 전자공학회논문지C
    • /
    • 제35C권3호
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

MLP 층을 갖는 CNN의 설계 (Design of CNN with MLP Layer)

  • 박진현;황광복;최영규
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델 (Deep Neural Network Model For Short-term Electric Peak Load Forecasting)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제9권5호
    • /
    • pp.1-6
    • /
    • 2018
  • 스마트그리드에서 정확한 단기 부하 예측을 통한 자원의 이용 계획은 에너지 시스템 운영의 불확실성을 줄이고 운영 효율을 높이는데 있어서 매우 중요하다. 단기 부하 예측에 얕은 신경회로망을 포함한 다수의 머신 러닝 기법이 적용되어왔지만 예측 정확도의 개선이 요구되고 있다. 최근에는 컴퓨터 비전이나 음성인식 분야에서 심층 신경회로망의 뛰어난 연구 결과로 인해 심층 신경회로망을 단기 전력수요 예측에 적용해 예측 정확도를 개선하려는 시도가 주목 받고 있다. 본 논문에서는 일별 전력 부하 첨두치를 예측하기 위한 다층신경회로망 구조의 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 층별 학습이 선행된 후 전체 모델의 학습이 이루어진다. 한국전력거래소에서 얻은 4년 동안의 일별 전력 수요 데이터를 사용, 하루 및 이틀 앞선 전력수요 첨두치를 예측하는 심층 신경회로망 모델을 구축하고 예측 정확도를 비교, 평가한다.

다층 신경회로망을 이용한 GMA 용접 공정에서의 용융지 크기의 예측 (Estimation of weld pool sizes in GMA welding processes using a multi-layer neural net)

  • 임태균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1028-1033
    • /
    • 1991
  • This paper describes the design of a neural network estimator to estimate weld pool sizes for on-line use of quality monitoring and control in GMA welding processes. The estimator utilizes surface temperatures measured at various points on the top surface of the weldment as its input. The main task of the neural net is to realize the mapping characteristics from the point temperatures to the weld pool sizes through training, A series of bead-on plate welding experiments were performed to assess the performance of the neural estimator.

  • PDF

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

신경 회로망을 이용한 유압 굴삭기의 일정각 굴삭 제어 (A constant angle excavation control of excavator's attachment using neural network)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.151-155
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbance and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉 (Visual servoing of robot manipulators using the neural network with optimal structure)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF

비선형 시스템의 직접제어방식을 위한 병렬형 신경회로망 (Parallel Type Neural Network for Direct Control Method of Nonlinear System)

  • 김주웅;정성부;서원호;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.406-409
    • /
    • 2000
  • 본 논문에서는 비선형 시스템의 효과적인 제어를 위해 병렬 연결된 신경회로망 제어방식을 제안한다. 제안한 제어방식은 비선형 시스템을 선형부분과 비선형 부분으로 분리하여 각각에 대해 반복최소자승법과 다층회귀신경회로망을 이용하여 플랜트를 직접 제어하는 방식이다. 제안한 제어방식의 유용성을 확인하기 위해 단일 관절 매니퓰레이터에 적용하여 기존의 다층 신경회로망 제어방식과 비교 검토하여 우수성을 확인하였다.

  • PDF