• Title/Summary/Keyword: Multi-forming

Search Result 508, Processing Time 0.032 seconds

Fabrication of Polymer Master with High Aspect Ratio by Using Anodic Aluminum Oxidation (양극산화공정을 이용한 고세장비의 폴리머 마스터 제작)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.285-287
    • /
    • 2008
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Production of Laser Welded Tube for Automobile Bumper Beam from 60kgf/$\textrm{mm}^2$Grade Steel Sheet (60kgf/$\textrm{mm}^2$급 자동차 범퍼빔용 레이저 용접 튜브 제조기술 및 장치연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jong-Soo;Kim, Jung-O;Kang, Hee-Sin;Lee, Moon-Yong;Jung, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.136-144
    • /
    • 2004
  • Optimal process and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from a cold rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die (포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발)

  • 이정민;김병민;강충길;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

A Study on Stucture of CAD / CAPP System in th e Heading Process Using Rigid-Plastic Finite Element Analysis (강소성 유한 요소법을 이용한 냉간 2단 헤딩가공에 있어서 CAD / CAPP 시스템의 구축에 대한 연구 1))

  • 신영우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.53-63
    • /
    • 1994
  • The conventional cold-heading process for the production of a bolt-shaped product is composed of some process and two or three blows heading. The strength of a bolt-shaped product produced by multi-blow heading depends on the working conditions of the heading process such as preforming die angle, corner-radius of the necked portion of product, and the reduction in height during pre-forming. Arigid-plastic finite-element program(RDHPSC) has been coded and the program testified by comparison with the results of experimentation. A method of testing the optimum die-conditions in the double-blow heading process by use of RDHPSC analysis is discussed a fundamental structures of CAD/CAPP system for two-blow heading process is discussed.

  • PDF

Microfabrication of Micro-Conductive patterns on Insulating Substrate by Electroless Nickel Plating (무전해 니켈 도금을 이용한 절연기판상의 미세전도성 패턴 제조)

  • Lee, Bong-Gu;Moon, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2010
  • Micro-conductive patterns were microfabricated on an insulating substrate ($SiO_2$) surface by a selective electroless nickel plating process in order to investigate the formation of seed layers. To fabricate micro-conductive patterns, a thin layer of metal (Cu.Cr) was deposited in the desired micropattern using laser-induced forward transfer (LIFT). and above this layer, a second layer was plated by selective electroless plating. The LIFT process. which was carried out in multi-scan mode, was used to fabricate micro-conductive patterns via electroless nickel plating. This method helps to improve the deposition process for forming seed patterns on the insulating substrate surface and the electrical conductivity of the resulting patterns. This study analyzes the effect of seed pattern formation by LIFT and key parameters in electroless nickel plating during micro-conductive pattern fabrication. The effects of the process variables on the cross-sectional shape and surface quality of the deposited patterns are examined using field emission scanning electron microscopy (FE-SEM) and an optical microscope.

Effect of Several Exterior Adhesive Types on Dimensional Stability of Bamboo Oriented Particleboard

  • Iswanto, Apri Heri;Munthe, Rensus;Darwis, Atmawi;Azhar, Irawati;Susilowati, Arida;Prabuningrum, Dita Sari;Fatriasari, Widya
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.277-281
    • /
    • 2019
  • The objective of this research is to evaluate the effect of adhesive types on dimensional stability of bamboo-oriented particleboard. The materials used in this research are bamboo tali(Gigantochloa apus J.A & J.H. Schult. Kurz), UF/MDI(8, 10, 12 % level), and MF, MDI, and PF at 7 % level. Particle and adhesive are mixed using a blending machine; then, mat forming and hot pressing processes are performed using adhesive-suitable temperature and time references. MDI resin is set at $160^{\circ}C$ temperature for 5 minutes. PF resin and MF resin are pressed at $170^{\circ}C$ for 10 minutes, and $140^{\circ}C$ for 10 minutes, respectively, while UF/MDI sets at temperature of $140^{\circ}C$ for 10 minutes. The results show that particleboard using PF resin produces the lowest thickness swelling value. The particleboard using UF/MDI resin also produces good response for thickness swelling value. Interesting things happen in that UF/MDI adhesive produces a thickness swelling value better than that of MDI resin. FTIR analysis on particleboard bonded by UF/MDI resin combination shows the presence of carbonyl group C=O vibration on multi substitution of urea at wave number of around $1,700cm^{-1}$.

Electronic Attack Signal Transmission System using Multiple Antennas (다중 안테나를 이용한 전자 공격 신호 전송 시스템)

  • Chang, Jaewon;Ryu, Jeong Ho;Park, Joo Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • In electronic warfare, beamforming using multiple antennas is applied for effective transmission of electronic attack signals. In order to perform an electronic attack against multiple threats using the same frequency resource, it is necessary to apply a multi-beam transmission algorithm that has been studied in wireless communication systems. For electronic attacks against multiple threats, this paper presents an MMSE(Minimum Mean-Squared Error) beam-forming technique based on the prior location information of threats and an optimization method for power allocation. In addition, the performance of the proposed method is evaluated and received signals of multiple threats are compared and analyzed.

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

A Study on Excitation Error Estimation for Active Phased Array Antenna (능동위상배열안테나의 급전신호 오차 추정에 관한 연구)

  • Jung, Hyeon-Jong;Jung, Jin-Woo;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The active phased array antenna system performs beam steering, multi-beam formation and adaptive beam forming by controlling the amplitude and phase of signals fed to each radiating element. In order to obtain the desired radiation characteristics using an active phased array antenna system, the accurate amplitude and phase of the signal must be fed to each radiating element; however, due to various causes, the signal errors occurs in each radiating element. In this paper, a signal error estimation method of each radiating element is proposed. The proposed method simplifies the process of signal error estimation, and can quickly and accurately calculate the signal error.

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.