• Title/Summary/Keyword: Multi-fault

Search Result 406, Processing Time 0.025 seconds

Agent based real-time fault diagnosis simulation (에이젼트기반 실시간 고장진단 시뮬레이션기법)

  • 배용환;이석희;배태용;이형국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.670-675
    • /
    • 1994
  • Yhis paper describes a fault diagnosis simulation of the Real-Time Multiple Fault Dignosis System (RTMFDS) for forcasting faults in a system and deciding current machine state from signal information. Comparing with other diagnosis system for single fault,the system developed deals with multiple fault diagnosis,comprising two main parts. One is a remotesignal generating and transimission terminal and the other is a host system for fault diagnosis. Signal generator generate the random fault signal and the image information, and send this information to host. Host consists of various modules and agents such as Signal Processing Module(SPM) for sinal preprocessing, Performence Monotoring Module(PMM) for subsystem performance monitoring, Trigger Module(TM) for multi-triggering subsystem fault diagnosis, Subsystem Fault Diagnosis Agent(SFDA) for receiving trigger signal, formulating subsystem fault D\ulcornerB and initiating diagnosis, Fault Diagnosis Module(FDM) for simulating component fault with Hierarchical Artificial Neural Network (HANN), numerical models and Hofield network,Result Agent(RA) for receiving simulation result and sending to Treatment solver and Graphic Agent(GA). Each agent represents a separate process in UNIX operating system, information exchange and cooperation between agents was doen by IPC(Inter Process Communication : message queue, semaphore, signal, pipe). Numerical models are used to deseribe structure, function and behavior of total system, subsystems and their components. Hierarchical data structure for diagnosing the fault system is implemented by HANN. Signal generation and transmittion was performed on PC. As a host, SUN workstation with X-Windows(Motif)is used for graphic representation.

  • PDF

Development of Fault Detection and Noise Cancellation Algorithm Using Wavelet Transform on Underground Power Cable Systems (웨이블렛을 이용한 지중송전계통 고장검출 및 노이즈 제거 알고리즘 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1191-1198
    • /
    • 2007
  • In this paper, the fault detection and noise cancellation algorithm based on wavelet transform was developed to locate the fault more accurately. Specially, noise cancellation algorithm was based on the correlation of wavelet coefficients at multi-scales. Fault detection, classification and location algorithm were tested by EMTP simulation on real power cable system. From these results, the faults can be detected and located even in very difficult situations, such as at different inception angle and fault resistance.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

Transferred OverVoltages on LV sides in Multigrounded Neutral during Line to Ground Fault on Distribution Systems (배전계통의 고저압 혼촉고장시 중성선 전위상승에 따른 저압기기 스트레스 전압)

  • Choi, Sun-Kyu;Choi, Jong-Kee;Kim, Kyoung-Hun;Choi, Myeong-Ho;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.910-915
    • /
    • 2012
  • In this paper we propose multi-grounded neutral design method which was considered of transferred transient overvoltage when line to neutral fault occurs. Specially, In order to confirm the actual transient overvoltage magnitude which occurs on neutral line, we considered some screening(shielding) effects. The screening coefficient was deducted from field test results and calculation in a distribution line which is identical with an actual power line. The purpose of this paper is to attempt to suggest the guidance for grounding skystem design considering limitation of overvoltage for LV side in IEC 61936. The result is based on EMTP simulation and real field faults situation in distribution lines.

Testing and Self Calibration of RF Circuit using MEMS Switches

  • Kannan, Sukeshwar;Kim, Bruce;Noh, Seok-Ho;Park, Se-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.882-885
    • /
    • 2011
  • This paper presents testing and self-calibration of RF circuits using MEMS switches to identify process-related defects and out of specification circuits. We have developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated using an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. This test stimulus is provided as input to the RF circuit and peak-to-average ratio (PAR) is measured at the output. For a faulty circuit, a significant difference is observed in the value of PAR as compared to a fault-free circuit. Simulation is performed for various circuit conditions such as fault-free as well as fault-induced and their corresponding PARs are stored in the look-up table. This testing and self-calibration technique is exhaustive and efficient for present-day communication systems.

  • PDF

A Novel Distance Relaying Algorithm in a Multi-Agent Protection System of transmission line (Multi-Agent 송전계통 보호시스템에서의 새로운 거리계전 알고리즘)

  • Moon, H.K.;Jin, B.G.;Hyun, S.H.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.217-219
    • /
    • 2003
  • This paper presents a distance relaying algorithm for a transmission line protection with MAS. First, the voltage and fault current of the opposite side are represented as a function of those of the measuring end using source voltages of both ends. These voltages are assumed to be obtained from the transformers protecting agents, periodically in normal state. Then, the fault location expression, independent of fault resistance, is derived with voltage and current in only one end of faulted line used. The suggested algorithm is applied to a simple system with two power sources to show its effectiveness.

  • PDF

Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films (YBCO 박막을 이용한 배전급 저항형 초전도 한류기)

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Kim, H.M.;Oh, I.S.;Shim, J.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

Monolith and Partition Schemes with LDA and Neural Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection

  • Ayhan Bulent;Chow Mo-Yuen;Song Myung-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Broken rotor bars in induction motors can be detected by monitoring any abnormality of the spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any misinterpretation of the signatures that are obscured by factors such as measurement noises and different load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide appropriate environments to develop such fault detection schemes because of their multi-input processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault detection with multiple signature processing, and demonstrates that multiple signature processing is more efficient than single signature processing.

Rule-based Fault Detection Agent System for Fault Detection and Location on LAN (LAN 상의 장애 검출 및 위치 확인을 위한 규칙 기반 장애 진단 에이전트 시스템)

  • Jo, Gang-Hong;An, Seong-Jin;Jeong, Jin-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2169-2178
    • /
    • 2000
  • This paper proposes the structure of an agent and rules for fault detection and location on LAN. To find out a reason of critical fault incurred LAN, collision detection rule, error detection rule, broadcast detection rule, system location rule, and Internet application location rule ar shown. Also, the structure of multi-agent system and state transition diagram is portrayed to have connectivity with he set of rules. To verify availability of proposed rules, the process to find a faulty system is shown by monitoring and analyzing the LAN fault occurrences from the proposed set of rules. Such an rule based agent system is helpful to an Internet manager to solve a reason of fault and make ad decision from gathering management information.

  • PDF