• 제목/요약/키워드: Multi-dimensional transform

검색결과 66건 처리시간 0.027초

회전기계의 이상진단을 위한 진동신호 분류시스템에 관한 연구 (Classification System using Vibration Signal for Diagnosing Rotating Machinery)

  • 임동수;안경룡;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1133-1138
    • /
    • 2000
  • This paper describes a signal recognition method for diagnosing the rotating machinery using wavelet-aided Self-Organizing Feature Map(SOFM). The SOFM specialized from neural network is a new and effective algorithm for interpreting large and complex data sets. It converts high-dimensional data items into simple order relationships with low dimension. Additionally the Learning Vector Quantization(LVQ) is used for reducing the error from SOFM. Multi-resolution and wavelet transform are used to extract salient features from the primary vibration signals. Since it decomposes the raw timebase signal into two respective parts in the time space and frequency domain, it does not lose either information unlike Fourier transform. This paper is focused on the development of advanced signal classifier in order to automatize vibration signal pattern recognition. This method is verified by the experiment and several abnormal vibrations such as unbalance and rubbing are classified with high flexibility and reliability by the proposed methods.

  • PDF

CORDIC 알고리듬에 기반 한 OFDM 시스템용 8192-Point FFT 프로세서 (A 8192-Point FFT Processor Based on the CORDIC Algorithm for OFDM System)

  • 박상윤;조남익
    • 한국통신학회논문지
    • /
    • 제27권8B호
    • /
    • pp.787-795
    • /
    • 2002
  • 본 논문에서 OFDM (Orthogonal Frequency-Division Multiplexing) 시스템용 2K/4K/8K-point 복소 FFT (Fast Fourier Transform) 프로세서의 구조와 그 구현방법을 제안한다. 제안하는 프로세서의 구조는 긴 길이의 DFT를 짧은 길이의 다차원 DFT로 분할하기 위하여 쿨리-투키 알고리듬에 기반 한다. 전치 메모리, 셔플 메모리, 메모리 합성 방법은 다차원 변환을 위한 메모리의 능률적 조작을 위해 사용한다. Booth 알고리듬과 CORDIC (COordinate Rotation DIgital Computer) 프로세서는 각 차원에서 트위들 팩터 곱셈을 위해 사용한다. 또한, CORDIC 프로세서에는 트위들 팩터를 저장하기 위해 필요한 ROM의 사용을 막기 위해 트위들 팩터 발생 방법을 제안한다. 전체 2K/4K/8K FFT 프로세서는 600,000 게이트를 사용하며, 1.8V, 0.18${\mu}m$ CMOS를 이용해 구현한다. 제안하는 프로세서는 8K-point FFT를 273${\mu}s$마다, 2K-point를 68.26${\mu}s$마다 수행할 수 있으며, SNR은 DVB-T의 OFDM을 위해 충분한 48dB를 넘는다.

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

다층퍼셉트론의 정합 근사화에 의한 2차원 영상의 카메라 오차보정 (A 2-D Image Camera Calibration using a Mapping Approximation of Multi-Layer Perceptrons)

  • 이문규;이정화
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.487-493
    • /
    • 1998
  • Camera calibration is the process of determining the coordinate relationship between a camera image and its real world space. Accurate calibration of a camera is necessary for the applications that involve quantitative measurement of camera images. However, if the camera plane is parallel or near parallel to the calibration board on which 2 dimensional objects are defined(this is called "ill-conditioned"), existing solution procedures are not well applied. In this paper, we propose a neural network-based approach to camera calibration for 2D images formed by a mono-camera or a pair of cameras. Multi-layer perceptrons are developed to transform the coordinates of each image point to the world coordinates. The validity of the approach is tested with data points which cover the whole 2D space concerned. Experimental results for both mono-camera and stereo-camera cases indicate that the proposed approach is comparable to Tsai's method[8]. Especially for the stereo camera case, the approach works better than the Tsai's method as the angle between the camera optical axis and the Z-axis increases. Therefore, we believe the approach could be an alternative solution procedure for the ill -conditioned camera calibration.libration.

  • PDF

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

셀 생산 방식에서 자기조직화 신경망을 이용한 기계-부품 그룹의 형성 (A self-organizing neural networks approach to machine-part grouping in cellular manufacturing systems)

  • 전용덕;강맹규
    • 산업경영시스템학회지
    • /
    • 제21권48호
    • /
    • pp.123-132
    • /
    • 1998
  • The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.

  • PDF

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

고속 푸리에 변환을 이용한 계층적 위상기반 3차원 객체 추출 기법 (3D Object Extraction Algorithm Based on Hierarchical Phase Using Fast Fourier Transform)

  • 한규필;이채수;박양우;엄태억
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.145-148
    • /
    • 2001
  • This paper presents a phase-based stereo matching algorithm in order to efficiently extract 3-dimensional objects from two 2D images. Conventional phase-based methods, especially using windowed Fourier phases, inherit good properties in the cage of hierarchical approaches, because they basically use a multi-resolution phase map. On the contrary, their computational cost is too heavy. Therefore, a fast hierarchical approach, using multi-resolution phase-based strategy and reducing redundancies of phase calculations based on FFT concept is proposed in this paper. In addition, a structural matching algorithm on the phase domain is presented to improve the matching quality. In experimental results. it is shown that the computation loads are considerably reduced about 8 times and stable outputs are obtained from various images.

  • PDF

부분방전 펄스파형의 시간-주파수분포를 이용한 기중부분방전원의 식별 (Discrimination of Air PD Sources Using Time-Frequency Distributions of PD Pulse Waveform)

  • 이강원;강성화;임기조
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권7호
    • /
    • pp.332-338
    • /
    • 2005
  • PD(Partial Discharge) signal emitted from PD sources has their intrinsic features in the region of time and frequency STFT(Short Time Fourier Transform) shows time-frequency distribution at the same time. 2-Dimensional matrices(33$\times$77) from STFT for PD pulse signals are a good feature vectors and can be decreased in dimension by wavelet 2D data compression technique. Decreased feature vectors(13$\times$24) were used as inputs of Back-propagation ANN(Artificial Neural Network) for discrimination of Multi-PD sources(air discharge sources(3), surface discharge(1)). They are a good feature vectors for discriminating Multi-PD sources in the air.

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제23권5호
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.