• Title/Summary/Keyword: Multi-code

Search Result 1,214, Processing Time 0.034 seconds

Semi-Analytical Averaged Error Rate Evaluation for DSF-Relay MC-CDMA systems over Multipath Rayleigh Fading Channels (다중경로 레일리 페이딩 채널에 대한 DSF 릴레이 MC-CDMA 시스템의 평균 오류율 의사 분석 기법)

  • Ko, Kyun-Byoung
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.138-144
    • /
    • 2012
  • In this paper, a semi-analytical approach is proposed for DSF(Decode and Selective Forward)-Relay MC-CDMA(MultiCarrier-Code Division Multiple Access) systems over multipath Rayleigh fading channels. Considering BER(bit error rate) performance and complexity, the MMSE-C(Minimum Mean squared Error-per subCarrier) is used as the combining method for MC-CDMA systems. At first, the analytical method based on error-events at relay nodes for DSF-Relay schemes is utilized in order to derive the averaged BER. Then, the averaged BER is expressed as the form considering possible all error-events. Also, proposed semi-analytical expressions have been verified by comparing with simulation results. Finally, it is verified that the derived analytical expressions can be a frame work to cover different multipath Rayleigh fading channel conditions and to measure the upper performance for DSF-Relay MC-CDMA systems.

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

FBLA (Flexible Block-wise Loading Algorithm) for Effective Resource Allocation and Reduction of the Uplink Feedback Information in OFDMA System (OFDMA 시스템에서 효율적인 자원할당과 상향링크 궤환 정보 축소를 위한 FBL (Flexible Block-wise Loading) 알고리즘)

  • Sun, Tae-Hyung;Ko, Sang-Jun;Chang, Kyung-Hi;Hwang, Sung-Hyun;Song, Myung-Sun;Kim, Chang-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.608-616
    • /
    • 2007
  • OFDM Systems for multi-user use adaptive modulation and ending (AMC) which is a method that selects suitable modulation order and code rate depending on channel state of each user. Using AMC, OFDM system can provide high quality and reliable communication. Base station using AMC scheme requires downlink channel information of each terminal to operate optimality. However, under practical system environment, it is unsuitable to transmit all channel information because uplink bandwidth of the system is limited. In this paper, we propose a flexible block-wise loading (FBL) algorithm combined with a novel CQI feedback scheme with reduced number of required bits to optimize the performance of AMC system. Proposed algorithm allocates sub-carrier groups dynamically to improve the sector throughput and outage probability performance.

Proposal of Rotating Stability Assessment Formula for an Interlocking Caisson Breakwater Subjected to Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 회전 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • The rotational stability of an interlocking caisson breakwater was studied. Using the analytical solution for the linear wave incident to the infinite breakwater, the phase difference effect of wave pressures in the direction of the breakwater baseline is considered, and Goda's wave pressure formula in the design code is adopted to consider the nonlinearity of the design wave. The rotational safety factor of the breakwater was defined as the ratio of the rotational frictional resistance moment due to caisson's own weight and the acting rotational moment due to the horizontal and vertical wave forces. An analytical solution for the rotational center point location and the minimum safety factor is presented. Stability assessment formula were proposed to be applicable to all design wave conditions used in current port and harbor structure design such as regular waves, irregular waves and multi-directional irregular waves.

Performance Analysis of The KALIMER Breakeven Core Driver Fuel Pin Based on Conceptual Design Parameters

  • Lee Dong Uk;Lee Byoung Oon;Kim Young Gyun;Lee Ki Bog;Jang Jin Wook
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.356-368
    • /
    • 2003
  • Material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the updated driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the end of life is predicted to be $68.61\%$ and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is $1.93\%$, satisfying the preliminary design criterion ($3\%$) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Feature Selection of Training set for Supervised Classification of Satellite Imagery (위성영상의 감독분류를 위한 훈련집합의 특징 선택에 관한 연구)

  • 곽장호;이황재;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.39-50
    • /
    • 1999
  • It is complicate and time-consuming process to classify a multi-band satellite imagery according to the application. In addition, classification rate sensitively depends on the selection of training data set and features in a supervised classification process. This paper introduced a classification network adopting a fuzzy-based $\gamma$-model in order to select a training data set and to extract feature which highly contribute to an actual classification. The features used in the classification were gray-level histogram, textures, and NDVI(Normalized Difference Vegetation Index) of target imagery. Moreover, in order to minimize the errors in the classification network, the Gradient Descent method was used in the training process for the $\gamma$-parameters at each code used. The trained parameters made it possible to know the connectivity of each node and to delete the void features from all the possible input features.

Blind Adaptive Receiver based on Constant Modulus for Downlink MC-CDMA Systems (하향링크 MC-CDMA 시스템을 위한 CM 기반의 블라인드 적응 수신기)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.47-54
    • /
    • 2019
  • In this paper, we consider a constant modulus (CM) based blind adaptive receiver design for downlink multi-carrier code-division multiple access (MC-CDMA) systems employing simple space-time block coding (STBC). In the paper, filter weight vectors used for the detection of the transmitted symbols are partitioned into its subvectors and then, special relations among the optimal subvectors minimizing the CM metric are derived. Using the special relations, we present a modified CM metric and propose a new blind adaptive stochastic-gradient CM algorithm (SG-CMA) by minimizing the modified CM metric. The proposed blind adaptive SG-CMA has faster convergence rate than the conventional SG-CMA because the filter weight vectors of the proposed scheme are updated in the region of satisfying the derived special relations. Computer simulation results are given to verify the superiority of the proposed SG-CMA.

A Standardized River Data Model Based on River Network for Building Multi-dimensional River Information System (다차원 하천 정보 체계 구축 위한 하천네트워크 기반 표준 하천 데이터 모델 개발)

  • Choi, Seoung Soo;Kim, Dongsu;You, Hojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.177-177
    • /
    • 2017
  • 최근 ADCP 등 첨단장비를 활용한 유량 및 하상측정, 각종 하천기본계획 수립 시 확보되는 횡단측정 자료, 식생 및 서식처 등 하천환경과 생태자료, 드론 등을 활용한 영상자료 등 방대한 하천 정보가 확보되고 있으며, 다기능보 등 다양한 하천구조물 및 친수구역이 증가하는 등 이전과 비교하여 괄목할만한 수준으로 정보의 양이 증가하고 있다. 이에 따라 다양한 하천정보를 체계적으로 저장, 관리, 공유하기 위하여 표준화된 데이터 모델(Data Model)의 수립이 필요하다. 하천 정보의 경우 하천 시설물, 하천 단면측량 자료, 하천 시계열 측정 자료 등이 특정 하천을 중심으로 관리되는 반면, 기존 데이터 모델 연구에서는 특정 주제도에 기반하여 하천 정보가 레이어 형식으로 제공되어 상호 연계되지 않아 하천 정보의 효율적 관리측면에서 적합하지 않았다. 또한 신규 정보를 추가 시 기존 데이터 모델의 과다한 수정이 필요하고, 기존의 데이터 모델의 경우 표준화되지 않아 활용성이 매우 낮고, 유역중심으로 구성되어 특정 조건에 해당되는 하천 정보 검색이 어려운 단점이 존재하였다. 본 연구에서는 기존의 주제도 및 레이어 형식으로 구성되어 있던 데이터 모델 형식에서 벗어나 하천흐름선을 기준으로 데이터모델을 구축하는 방안을 제시하였으며, 하천흐름선과 하천 시설물, 단면 측량 자료, 계측 자료를 순차적으로 수용하고, 기존에 존재하지 않던 하천 정보의 추가 시 기존 데이터 모델의 형식을 수정하지 않고 유연하게 대응할 수 있는 관계형 데이터 모델을 구상하였다. 또한, 하천과 유역의 논리적 저장방안 고려하여 한 개의 하천을 다수의 세그먼트(Reach)로 구분하여 코드(Reach Code)를 부여하는 방안을 제시하였으며, 구상한 데이터모델을 통하여 국가하천과 지방하천 등 유역의 다양성을 포함하는 한강권역의 섬강유역을 시범하천으로 구축하였다. 제시된 하천 정보 데이터 모델을 활용하여 DB를 구축한다면 하천망을 기준으로 하천 정보가 저장되고, 기존의 유역단위의 하천 정보 제공 방식에서 하천과 유역을 모두 포함하여 검색 가능한 시스템을 구축하여 하천 정보의 관리와 제공이 수월해질 것으로 기대된다.

  • PDF