• Title/Summary/Keyword: Multi-code

Search Result 1,214, Processing Time 0.032 seconds

GALAXY SED FITTING FROM AKARI TO HERSCHEL: 0.7 < z < 4 SUB-MILLIMETER LYMAN BREAK GALAXIES IN INFRARED

  • Burgarella, D.;The PEP-HerMES-COSMOS team, The PEP-HerMES-COSMOS team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.311-316
    • /
    • 2012
  • Lyman break Galaxies are galaxies selected in the rest-frame ultraviolet. But, one important and missing information for these Lyman break galaxies is the amount of dust attenuation. This is crucial to estimate the total star formation rate of this class of objects and, ultimately, the cosmic star formation density. AKARI, Spitzer and Herschel are therefore the major facilities that could provide us with this information. As part of the Herschel Multi-tiered Extragalactic Survey, we have began investigating the rest-frame far-infrared properties of a sample of more than 4,800 Lyman Break Galaxies in the GOODS-North fiels. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z <1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. We have analysed their UV-to-FIR spectral energy distributions using the code cigale to estimate their physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. They also appear to be located in a triangle-shaped region in the $A_{FUV}$ vs. $logL_{FUV}$ diagram limited by $A_{FUV}$ = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. In a second step, we move to the larger COSMOS field where we have been able to detect 80 Lyman break galaxies (out of ~ 15,600) in the far infrared. They form the largest sample of Lyman break galaxies at z > 2.5 detected in the far-infrared. We tentatively name them Submillimeter Lyman break galaxies (S-LBGs).

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.

Analysis of Hydraulic Characteristics of Yeongsan River and Estuary Using EFDC Model (EFDC-NIER 모델을 이용한 영산강 하구 물흐름 특성 분석)

  • Shin, Chang Min;Kim, Darae;Song, Yongsik
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.580-588
    • /
    • 2019
  • The flow of the middle and downstream of the Yeongsan River is stagnant by two weirs of Seungchon and Juksan and the estuary dam and maintained in freshwater. In this study, the Environmental Fluid Dynamics Code-National Institute of Environment Research(EFDC-NIER) model was applied to the Yeongsan River to simulate water flow, temperature, and salinity stratification. The EFDC-NIER model is an improved model which can simulate multi-functional weirs operation, multiple algal species, and the vertical movement mechanism of algal based on the EFDC model. The simulation results for the water level, water temperature, velocity, and salinity reproduced the observed values well. The mean absolute error(MAE) of the model calibration in the annual variations of the water level was 0.1-0.3 m, water temperature was 0.8-1.7 ℃, velocity was 4.5-7.1 cm/sec, and salinity was 1.5 psu, respectively. In the case of scenario simulation for the full opening of the estuary dam, the water level of the estuary dam was directly impacted by the tide so it was predicted to rise - 1.35 m to 0.2 m on average sea level. The velocity was also predicted to increase from 2.7 cm/sec to 50.8 cm/sec, and the flow rate to increase from 53 ㎥/sec to 5,322 ㎥/sec.

Parametric Analysis of the Solar Radiation Pressure Model for Precision GPS Orbit Determination

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • The SRP (Solar Radiation Pressure) model has always been an issue in the dynamic GPS (Global Positioning System) orbit determination. The widely used CODE (Center for Orbit Determination in Europe) model and its variants have nine parameters to estimate the solar radiation pressure from the Sun and to absorb the remaining forces. However, these parameters show a very high correlation with each other and, therefore, only several of them are estimated at most of the IGS (International GNSS Service) analysis centers. In this study, we attempted to numerically verify the correlation between the parameters. For this purpose, a bi-directional, multi-step numerical integrator was developed. The correlation between the SRP parameters was analyzed in terms of post-fit residuals of the orbit. The integrated orbit was fitted to the IGS final orbit as external observations. On top of the parametric analysis of the SRP parameters, we also verified the capabilities of orbit prediction at later time epochs. As a secondary criterion for orbit quality, the positional discontinuity of the daily arcs was also analyzed. The resulting post-fit RMSE (Root-Mean-Squared Error) shows a level of 4.8 mm on average and there is no significant difference between block types. Since the once-per-revolution parameters in the Y-axis are highly correlated with those in the B-axis, the periodic terms in the D- and Y-axis are constrained to zero in order to resolve the correlations. The 6-hr predicted orbit based on the previous day yields about 3 cm or less compared to the IGS final orbit for a week, and reaches up to 6 cm for 24 hours (except for one day). The mean positional discontinuity at the boundary of two 1-day arcs is on the level of 1.4 cm for all non-eclipsing satellites. The developed orbit integrator shows a high performance in statistics of RMSE and positional discontinuity, as well as the separations of the dynamic parameters. In further research, additional verification of the reference frame for the estimated orbit using SLR is necessary to confirm the consistency of the orbit frames.

A Study on an Improvement of the Performance by Spectrum Analysis with Variable Window in CELP Vocoder (CELP 부호화기에서 가변 윈도우 스펙트럼 분석에 의한 성능 향상에 관한 연구)

  • Min So-Yeon;Kim Eun-Hwan;Bae Myung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.233-238
    • /
    • 2005
  • In general CELP(Code Excited Linear Prediction) type vocoders provide good speech qualify around 4.8kbps. Among them, G.723.1 developed for Internet Phone and video-conferencing includes two vocoders, 5.3kbps ACELP(Algebraic-CELP) and 6.3kbps MP-MLQ(Multi-Pulse Maximum Likelihood Quantization) In order to improve the speech qualify in CELP vocoder, in this paper. we proposed a new spectrum analysis algorithm with variable window In CELP vocoder, the spectrum of the synthesised speech signal is distorted because the fixed size windows is used for spectrum analysis. So we have measured the spectral leakage and in order to minimize the spectral leakage have adjusted the window size. Applying this method G.723.1 ACELP, we can got SD(Spectral Distortion) reduction 0.084(dB), residual energy reduction 6.3$\%$ and MOS(Mean Opinion Score) improvement 0.1.

  • PDF

A Code-level Parallelization Methodology to Enhance Interactivity of Smartphone Entertainment Applications (스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론)

  • Kim, Byung-Cheol
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.381-390
    • /
    • 2015
  • One of the fundamental requirements of entertainment applications is interactivity with users. The mobile device such as the smartphone, however, does not guarantee it due to the limit of the application processor's computing power, memory size and available electric power of the battery. This paper proposes a methodology to boost responsiveness of interactive applications by taking advantage of the parallel architecture of mobile devices which, for instance, have dual-core, quad-core or octa-core. To harness the multi-core architecture, it exploits the POSIX thread, a platform-independent thread library to be able to be used in various mobile platforms such as Android, iOS, etc. As a useful application example of the methodology, a heavy matrix calculation function was transformed to a parallelized version which showed around 2.5 ~ 3 times faster than the original version in a real-world usage environment.

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II))

  • Kang Ji-Woong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Design and Implementation of 60 GHz Wi-Fi for Multi-gigabit Wireless Communications (멀티-기가비트 무선 통신을 위한 60GHz Wi-Fi 설계 및 구현)

  • Yoon, Jung-Min;Jo, Ohyun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.43-49
    • /
    • 2020
  • In spite of the notable advancements of millimeter wave communication technologies, the 60 GHz Wi-Fi is still not widespread yet, mainly due to the high limitation of coverage. Conventionally, it has been hardly possible to support a high data rate with fast beam adaptation while keeping atmospheric beamforming coverage. To solve these challenges in the 60 GHz communication system, holistic system designs are considered. we implemented an enhanced design LDPC decoder enabling 6.72 Gbps coded-throughput with minimal implementation loss, and our proposed phase-tracking algorithm guarantees 3.2 dB performance gain at 1 % PER in the case of 16 QAM modulation and LDPC code-rate 3/4.

Design and Performance Evaluation of OFDM-CDIM System Using Multiple Modes (다중 모드를 사용하는 OFDM-CDIM 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.515-522
    • /
    • 2018
  • An orthogonal frequency division multiplexing with coded direct index modulation(OFDM-CDIM) system that can achieve higher performance and spectral efficiency than previous OFDM systems is proposed. Previous OFDM with index modulation(IM) and OFDM-IM using dual modes systems allocate additional data to indices of respective subcarriers through combining operation with high complexity and then transmit them. However, the proposed system directly allocates the mode selection information to each subcarrier without performing additional operations. Then, the system selects and transmits one symbol in the selected mode. Furthermore, only the data allocated to the index of the subcarrier is encoded, and a good performance improvement effect is obtained with a high code rate. Simulation results show quantitatively that an OFDM-CDIM system using four modes improves bit error rate performance and transmission efficiency in additive white Gaussian noise and Rayleigh fading channel environments compared with a conventional OFDM system using 4-ary quadrature amplitude modulation.

A High Efficiency Reconfigurable Doherty Amplifier (고효율의 재구성된 도허티 증폭기)

  • Kim, Ell-Kou;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.220-226
    • /
    • 2008
  • This paper proposes the Reconfigurable Doherty Amplifier(RDA) with asymmetric structure which has ${\lambda}/4$ impedance transformer for modulating the load impedance in peaking amplifier path. This structure is possible to implement a compact size for N-stage multi Doherty amplifier and to get almost same characteristics that is compared to conventional Doherty amplifier. To realize the high efficiency amplifier, we were implemented 45 Watts power amplifier at transmitter band of Wideband Code Division Multiple Access(WCDMA) base-station. As a result, in case of WCDMA 1 Frequency Allocation(FA) input signals, this amplifier has obtained a 26.3% Power Added Efficiency(PAE) at 8 dB back-off point from P1dB and an Adjacent Channel Leakage Power(ACLR) is -40.4 dBc at center frequency ${\pm}5MHz$ deviation.

  • PDF