• 제목/요약/키워드: Multi-clouds

검색결과 82건 처리시간 0.026초

TRAO Multi-beam Legacy Survey of Nearby Filamentary Molecular Clouds : Progress Report

  • Kim, ShinYoung;Chung, Eun Jung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Tafalla, Mario;Kim, Gwanjeong;Kim, Miryang;Soam, Archana;Gophinathan, Maheswar;Liu, Tie;Kim, Kyounghee;Kwon, Woojin;Kim, Jongsoo
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.32.1-32.1
    • /
    • 2017
  • To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until Feb. 2017, the real OTF observation time is 460 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the five regions of molecular clouds (L1251 of Cepheus, Perseus west, Polaris south, BISTRO region of Serpense, California, and Orion B). The maps of a total area of $7.38deg^2$ for both $^{13}CO$ and $C^{18}O$ lines and $2.19deg^2$ for both $N_2H^+$ and $HCO^+$ lines were obtained. All OTF data were regridded to a cell size of 22 by 22 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about 0.22 K and $N_2H^+$ and $HCO^+$ data show about 0.14 K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. We are refining the process for a massive amount of data and the data reduction and analysis are underway. This presentation introduces the overall progress from observations to data processing and the initial analysis results to date.

  • PDF

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발 (Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications)

  • 이화선;이규성
    • 대한원격탐사학회지
    • /
    • 제31권5호
    • /
    • pp.371-384
    • /
    • 2015
  • GOCI 영상은 육상 관측에 적합한 공간해상도와 빠른 관측주기를 가지고 있지만, 현재까지 육상분야에 활용된 예가 많지 않다. GOCI 영상이 육상분야에 활용되기 위해서는 정교한 전처리가 수행되어 신뢰성을 갖춘 기본적인 산출물 형태로 제공되어야 한다. 본 연구에서는 GOCI 영상의 육상 활용을 위하여 구름의 영향이 최소화된 기본 산출물 제작에 필요한 구름 탐지 기법을 제안하였다. GOCI 영상은 구름 탐지에 효과적인 단파적외선(SWIR)과 열적외선(TIR) 밴드가 없기 때문에, 이 연구에서는 GOCI 영상의 장점인 빠른 관측 주기로 얻어지는 많은 다중시기영상을 이용하여 구름을 탐지하는 방법을 개발하였다. 제안한 구름탐지 기법은 세 단계로 구성된다. 1단계와 2단계에서는 1번 밴드 반사율과 1번과 8번 밴드의 반사율 비(b1/b8)에 임계값을 적용하여 완전 맑음(confident clear)과 두꺼운 구름(thick cloud)을 구분했다. 마지막 단계에서는 3일 동안 얻어진 b1/b8 값의 평균을 임계값으로 하여 얇은 구름(thin cloud)을 구분하였다. 이러한 순차적인 구름탐지 알고리즘을 적용하여 모두 4개의 등급으로 분류하였다. 본 연구에서 제안한 기법을 GOCI 영상에 적용 후 그 결과를 MODIS 구름 산출물(cloud mask products)과 비교 검증하였다. 여러 시기의 영상에서 추출된 구름 면적을 비교한 결과 평균제곱근오차(RMSE)가 10% 미만으로 MODIS 구름 산출물과 유사한 결과를 얻었다. 육안 분석을 통해 구름의 공간적인 분포를 비교한 결과, MODIS 산출물과 비슷한 구름 분포를 보여주었다.

VANET 망에서 다중 홉 클라우드 형성 및 리소스 할당 (Multi-Hop Vehicular Cloud Construction and Resource Allocation in VANETs)

  • 최현석;남영주;이의신
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권11호
    • /
    • pp.263-270
    • /
    • 2019
  • 최근 주목받는 기술인 차량 클라우드 컴퓨팅은 운전자들에게 다양한 차량 응용 어플리케이션을 위한 클라우드 서비스를 제공해 줄 수 있다. 차량 클라우드는 각각의 차량들이 보유한 리소스를 서로 공유하는 차량들의 집합이다. 차량 클라우드를 형성하기 위해 차량들은 차량 대 차량(Vehicle-to-Vehicle) 통신을 통해 서로 협력해야 한다. 차량 클라우드 형성을 위해 협력하는 차량들은 각각의 속도와 이동 방향 및 현재 위치가 다르므로 차량 클라우드는 다중 홉에 걸쳐 형성되어야 한다. 다중 홉 통신을 이용한 차량 클라우드 형성은 간헐적인 무선 연결성과 제한된 리소스를 보유한 차량의 수가 적은 환경으로 인해 차량 클라우드의 형성이 어렵다. 따라서, 다중 홉 통신 방식을 이용한 차량 클라우드 형성은 차량 간 통신의 안정성을 높여 클라우드의 형성 및 서비스 효율을 높이고, 서비스 지연시간 및 차량 간 교환 패킷의 수 등에서 개선 방안이 필요하다. 본 논문은 요청 차량과 가용 리소스를 제공하는 제공 차량들 간의 연결 시간을 고려하여 클라우드 형성 및 서비스 효율을 높이고 서비스 지연과 전송 패킷의 수를 줄이는 다중 홉 클라우드 형성 방안을 제안한다. 제안 방안은 차량들 사이의 연결 시간을 기반으로 홉과 홉을 연결하기 위한 중간 차량을 선택하여 다중 홉 차량 클라우드 형성의 실패율을 감소시킨다. 다양한 환경에서 수행된 시뮬레이션은 제안 방안이 기존의 방안보다 향상된 성능을 보이는지 검증한다.

해양환경에서 선박 추적을 위한 라이다를 이용한 궤적 초기화 및 표적 추적 필터 (Track Initiation and Target Tracking Filter Using LiDAR for Ship Tracking in Marine Environment)

  • 황태현;한정욱;손남선;김선영
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2016
  • This paper describes the track initiation and target-tracking filter for ship tracking in a marine environment by using Light Detection And Ranging (LiDAR). LiDAR with three-dimensional scanning capability is more useful for target tracking in the short to medium range compared to RADAR. LiDAR has rotating multi-beams that return point clouds reflected from targets. Through preprocessing the cluster of the point cloud, the center point can be obtained from the cloud. Target tracking is carried out by using the center points of targets. The track of the target is initiated by investigating the normalized distance between the center points and connecting the points. The regular track obtained from the track initiation can be maintained by the target-tracking filter, which is commonly used in radar target tracking. The target-tracking filter is constructed to track a maneuvering target in a cluttered environment. The target-tracking algorithm including track initiation is experimentally evaluated in a sea-trial test with several boats.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

정지궤도 기상위성 자료를 활용한 강우유형별 강우량 추정연구 (A Study on the Algorithm for Estimating Rainfall According to the Rainfall Type Using Geostationary Meteorological Satellite Data)

  • 이은주;서명석
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2006
  • Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.

  • PDF

A REPRESENTATIVITY TEST OF THE SURFACE SOLAR INSOLATION THROUGH SATELLITE OBSERVATION

  • Yeom, Jong-Min;Park, Youn-Young;Kim, Young-Seup;Han, Kyung-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.655-659
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a 5km ${\times}$ 5km spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with 3${\times}$3, 5${\times}$5, 7${\times}$7, 9${\times}$9, 10${\times}$10, 11${\times}$11, 13${\times}$13 pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

  • PDF

Upgraded TRAO and its performance

  • Lee, Chang Won;Kang, Hyunwoo;Lee, Changhoon;Jung, Jae Hoon;Jeong, Il-Gyo;Lee, Youngung;Kim, Young Sik
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.38.1-38.1
    • /
    • 2016
  • TRAO has been newly equipped with a multi-beam receiver system, 16 pixel MMIC preamplifiers in a $4{\times}4$ array, a FFT spectrometer, and new control computer systems. In our new receiver systems one can make simultaneous observations with two molecular lines maximum 15 GHz apart with a spectral band width of 60 MHz. Typical system temperatures are about 160 - 200 K at 86 ~ 100 KHz and 400 - 500 K at 115 GHz in the dry weather. The new systems using On-The-Fly mode were found to be very efficient in making quick and sensitive maps of large clouds with a high velocity resolution (~0.04 km/s at 100 GHz). TRAO now calls for proposals for 2016 and 2017 observing season for everybody. In the talk we will introduce the current status of TRAO upgrade and its scientific preliminary results.

  • PDF

A Representativity Test on the Pyranometer Measurement of Surface Solar Insolation Through Satellite Observation

  • Yeom, Jong-Min;Han, Kyung-Soo;Park, Youn-Young;Kim, Young-Seup
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.389-396
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a $5\;km{\times}5\;km$ spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with $3{\times}3,\;5{\times}5,\;7{\times}7,\;9{\times}9,\;10{\times}10,\;11{\times}11,\;13{\times}pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.