• Title/Summary/Keyword: Multi-chamber

Search Result 309, Processing Time 0.022 seconds

A Study on the exposure dose for the computed tomography (컴퓨터 단층촬영시 환자피폭선량에 관한 연구)

  • Kim, Moon-Chan;Lim, Jong-Suck;Park, Hyung-Ro;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to estimate absorbed radiation doses associated with CT examinations. We compared CT dose index between single detector CT and multi detector CT. To establish radiation dose criteria in CT examination in Korea, we measured radiation dose for CT examinations in Seoul and kyungki-do. The results obtained were as follows ; 1. Averaged CTDIW value per 100 mAs was $13.5{\pm}3.2\;mGy$, and ranged from 8.1 mGy to 19.1 mGy in head phantom, was $7.1{\pm}2.0\;mGy$, and ranged from 3.7 mGy to 10.9 mGy in body phantom. 2. CTDIW was 3.2 mGy(1.26 times) larger in multi detector CT than single detector CT in head phantom, and 2.1 mGy(1.34 times) larger in body phantom. 3. The dose was the highest in 4 channel multi detector CT, and followed 8 channel multi detector CT, 16 channel multi detector CT and single detector CT in head phantom. And the dose was the highest in 4 channel and 8 channel multi detector CT, and followed 16 channel multi detector CT and single detector CT in body phantom.

  • PDF

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

A Study on the effect of electromagnetic interference in adjacent antenna apertures of multi-function radar for Integrated MAST (통합마스트용 다기능위상배열 레이다의 인접 안테나 개구면 전자파 간섭 영향성 연구)

  • Jung, Chae-Hyun;Ryu, Seong-Hyun;Lee, Hang-Soo;Han, Jae-Sub;Kim, Young-Wan;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • In this paper, we study the electromagnetic interference in adjacent antenna aperture of multi-function radar for Integrated MAST of naval ship, which is operating plural radars, with test result of two different X-band antennas. Two antennas is placed in the test fixture copying the part of Integrated MAST for the experiment. The test figure is modeled to see the electromagnetic interference when antenna beam is steered by using electromagnetic analysis tool. Also, 6 test scenarios is determined to verify experimentally and each test scenario is run in an anechoic chamber. At the test antenna #1 radiates a pulse signal and the signal from the antenna #2 is stored and analyzed in the optic data format through a receiving device. Based on the result, the effect of electromagnetic interference is suggested when multi-function radars in the Integrated MAST are operating in adjacent distance.

Rotation Point of Laterally Loaded Pile Under Multi Layered Soil (다층지반 하에서 수평하중을 받는 말뚝의 회전점)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler (촉매삽입형 Urea-SCR 머플러 다공튜브 형상변화에 따른 NOx 저감 특성에 관한 연구)

  • Moon, Namsoo;Lee, Sangkyoo;Ko, Sangchul;Lee, Jeekeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1017-1026
    • /
    • 2014
  • A multi-perforated tube is generally installed between the muffler inlet and in front of selective catalytic reduction (SCR) catalysts in the integrated urea-SCR muffler system in order to disperse the urea-water solution spray uniformly and to make better use of the SCR catalyst, which would result in an increase nitrogen oxide ($NO_x$) reduction efficiency and a decrease in the ammonia slip. The effects of the multi-perforated tube orifice area ratios on the internal flow characteristics were investigated analytically by using a general-purpose commercial software package. From the results, it was clarified that the multi-perforated tube geometry sensitively affected the generation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst. To verify the analytical results, engine tests were carried out in the ESC and ETC modes. Results of these tests indicated that the larger flow model in the longitudinal direction showed the highest NOx reduction efficiency, which was a good agreement with the analytical results.

Study for Multi Channel Radiation Detector Using of Microfilm and Carbon Electrode (탄소막 마이크로필름을 이용한 다채널 전리함 개발에 관한 연구)

  • Shin Kyo Chul;Yun Hyong Geun;Jeong Dong Hyeok;Oh Yong Kee;Kim Jhin Kee;Kim Ki Hwan;Kim Jeung Kee
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • We have designed the multi channel detector for the quality assurance of clinical photon beams. The detector was composed of solid phantom inserted by six plane-parallel ionization chambers at different depth. The chamber as a mini plane parallel chamber was made of carbon coated microfilms. In this study the electrical characteristics of the six chambers in the solid phantom were evaluated using 6 MV photon beam. The leakage currents were less than 0.5 pA, reproducibility was less than 0.5$\%$, linearity was less than 0.5$\%$, and dose rate effect was less than 0.7$\%$. In addition the effect of dose variation from other chambers was estimated to maximum 0.8$\%$ approximately. The developed detector can be used for quality determination in output dosimetry or measurement of percentage depth dose approximately for clinical photon beam.

  • PDF

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

Micromachined DNA Manipulation Device Using Circular Multi-Electrodes (원형 다중전극을 이용한 DNA 조작소자)

  • Moon, Sang-Jun;Yun, Jae-Young;Lee, Seung-S.;Nam, Hong-Kil;Chi, Yeun-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1071-1075
    • /
    • 2003
  • In this paper, we present a DNA manipulation device in the reaction chamber, which consists of a center electrode and circular outer electrodes of a reaction unit. The charged bio-molecules, DNA, are manipulated by the charge of the electrode in reaction unit. Controlling the induced dynamic electric field between the center electrode and the outer electrodes, concentration / repulsion / manipulation of bio-molecules are enabled at a periphery of electrode. Concentration of the fluorescent DNA at the center electrode is observed by applying +2V. Subsequently, applying -2V, the concentrated DNA is repelled rapidly from the center electrode, which makes dispersion completely in 0.5second. Furthermore, repeated applying +1V/-1V every 5 seconds at each outer electrode, we can circulate the DNA. We also investigate a micro-heater and sensor for DNA manipulation and reaction temperature. The coefficient of heat-resistance and heater temperature characteristic is 0.0043 and 100$^{\circ}C$/sec, respectively.

Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell (Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계)

  • Lee, Sang-Ho;Lee, Jung-Min;Jo, Hyung-Ho;Jo, Hoon;Kim, Mun-Bae;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.