• Title/Summary/Keyword: Multi-body contact

Search Result 76, Processing Time 0.024 seconds

Development of Realtime Simulator for Multibody Dynamics Analysis of Wheeled Vehicle on Soft Soil (연약지반을 고려한 차량 실시간 시뮬레이터 개발)

  • Hong, Sup;Kim, Hyung-Woo;Cho, Yun-Sung;Cho, Hui-Je;Jung, Ji-Hyun;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.116-122
    • /
    • 2011
  • A realtime simulator using an explicit integration method is introduced to improve the solving performance for the dynamic analysis of a wheeled vehicle. Because a full vehicle system has many parts, the development of a numerical technique for multiple d.o.f. and ground contacts has been required to achieve a realtime dynamics analysis. This study proposes an efficient realtime solving technique that considers the wheeled vehicle dynamics behavior with full degrees of freedom and wheel contact with soft ground such as sand or undersea ground. A combat vehicle was developed to verify this method, and its dynamics results are compared with commercial programs using implicit integration methods. The combat vehicle consists of a chassis, double wishbone type front and rear suspension, and drive train. Some cases of vehicle dynamics analysis are carried out to verify the realtime ratio.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

Study on the Utilization of Natural Dyeing Materials as Household Supplies (천연염료 염색포의 생활용품 활용에 관한 연구)

  • Chu, Young-Joo
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.3 s.102
    • /
    • pp.73-80
    • /
    • 2006
  • This study is aimed to produce natural dyeing garments, which contain the sentiments and color sense of Koreans, by using various household supplies, with a view to increase the values added and utilization of natural dyeing. The dyes mainly used for this study are multi-colored ones which are durable after dyeing and can represent various colors. They include Lithodpermum officinale, Caesalpinia sappan, Rubia Cordifolia, Pellodendron Bak, Curcuma Longa L., fallen Ginkgo Biloba, Artemisia Princeps, and Quereus acutissima carr shell. Considering water pollution and other things, aluminum acetate and ferrous chloride were used as mordants. Cheap and practical materials such as cotton cloth and those with traditional patterns and elegance such as silk and ramie fabrics were used to produce baby goods, household supplies, clothes, and accessories. The produced supplies closely contact with our body, so they may have a great effect on human body. The household supplies produced include rug, bedclothes, room bedclothes, curtain, bedding set, cushion, and sunlight blind, in consideration of the functionality or medical actions of the goods which are closely related to the human skin. The infant supplies produced include longcloth for newborn baby, bedding set, gauze handkerchief, and doll. The clothes include night gown, shirt, bath gown, and Korean traditional clothes. The accessories include tablecloth, cup pad, bag, wrapping cloth, mouse and keyboard cushion, and scarf. Nowadays, consumers prefer environment-friendly naturally dyed garments and products. In order to control the naturally dyed garments and products which are traded in the domestic market, it is urgent to introduce such ecological marks as 'Toxproof' and 'Ecoproof.' Currently, many ordinary persons, who are not experts, have interest and participate in natural dyeing, but they simply produce naturally dyed garments, not artistic works or everyday supplies. The present author expects this study will contribute to the production of household goods by such persons. The author also hopes that they will develop and commercialize such designs as suit to modern tastes and senses based on the unique cultural assets of Koreans, so that Korean naturally dyed products may be recognized as reliable commodities equipped with international competitiveness.

Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts (언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Cho, Hoon;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.

Development of Bioelectric Signal Sensor System using Band Type ECG (밴드형 심전도 생체신호 전극시스템의 구현)

  • Kang Sung-Chul;Kim Gi-Ryon;Kim Kwang-Nyeon;Jung Dong-Keun;Kim Min-Sung;Jeong Do-Wun;Jeon Gye-Rok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1023-1026
    • /
    • 2006
  • There are some cases in trouble with monitoring emergency patient by existing electrode sensor in measuring instrument in home and hospital etc. And there are problem to measure because of coming down electrode in emergency car or vessel of shaking and fat, humidity of patient. In this study, it has designed band-type for patient to put on the breast easily and go around anywhere freely putting band electrode on his body. Gold has used as electrode material in this electrocardiogram because of its excellent electronic resistance peculiarity and no trouble with skin. And it is able to monitor multi-body-signal by additional design of periphery temperature. There are good results of body signal transmission in the breast or the rib, and get a little body signal in abdomen. We get a result it is better case of gold than usual electrode on signal detection, and know usual electrode was disposable, but we have more correct result from gold electrode sensor, being semi-permanent ana. great contact ability even if movement.

  • PDF

Analysis and Evaluation of Reduction of Impact Force in a Coupler when a Long Freight Car Brakes (장대화물열차 제동 시 연결기에 발생하는 충격력 해석 및 분석)

  • Lee, Jeong Jun;Koo, Jeong Seo;Cho, Byung Jin;Na, Hee Seung;Mun, Hyung Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.130-137
    • /
    • 2018
  • In long freight trains, there is a brake time delay in the neighboring freight cars that causes damage and fractures of couplers, especially the knuckle of them. If there is a problem for couplers in the cars, this could cause a derailment and lead to damage of human life and property damage. In this study, maximum forces on the couplers are studied when a long freight car brakes, with brake delay time and coupler gap. We have made a dynamic model of 50 freight cars and couplers, applying contact between couplers and a characteristic curve for expressing force and displacement of buffers with SIMPACK, a multi-body dynamics program. We use EN 14531-2 from the British Standards Institution, a standard of freight car brakes for the verification of the dynamic model. We also use a simplified method to analyze the dynamic model of 50 freight cars. With changing coupler gap and brake delay time, we do comparative analysis with AAR M-201 from the Association of American Railroads, a standard of AAR couplers. From this result, we find that the standard on fatigue limit is satisfied, such that the brake delay time is within 0.06 second if the coupler gap of the AAR coupler is within 20 millimeters.

Study on Thermal Stress Occurred in Concrete Energy Pile During Heating and Cooling Buildings (냉난방 가동 모사에 따른 콘크리트 에너지파일의 열응력 해석에 대한 연구)

  • Sung, Chihun;Park, Sangwoo;Kim, Byungyeon;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • The energy pile, used for both structural foundations and heat exchangers, brings about heat exchange with the ground formation by circulating a working fluid for heating and cooling buildings. As heat exchange occurs in the energy pile, thermal stress and strain is generated in the pile body and surrounding ground formation. In order to investigate the thermo-mechanical behavior of an energy pile, a comprehensive experimental program was conducted, monitoring the thermal stress of a cast-in place energy pile equipped with five pairs of U-type heat exchanger pipes. The heating and cooling simulation both continued for 30 days. The thermal strain in the longitudinal direction of the energy pile was monitored for a 15 operation days and another 15 days monitoring followed, without the application of heat exchange. In addition, a finite element model was developed to simulate the thermo-mechanical behavior of the energy pile. A non-linear contact model was adopted to interpret the interaction at the pile-soil interface, and thermal-induced structure mechanics was considered to handle the thermo-mechanical coupled multi-field problem.