• Title/Summary/Keyword: Multi-body Dynamic

Search Result 343, Processing Time 0.033 seconds

A Numerical Method for Dynamic Analysis of Tracked Vehicles of High Mobility

  • Lee, Ki-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1028-1040
    • /
    • 2000
  • A numerical method is presented for the dynamic analysis of military tracked vehicles of high mobility. To compute the impulsive dynamic contact forces which occur when a vehicle passes on a ground obstacle, the track is modeled as the combination of elastic links interconected by pin joints. The mass of each track link, the elastic elongation of a track link between pin joints by the track tension, and the elastic spring effects on the upper and lower surfaces of each track link have been considered in the equations of motion. And the chassis, torsion bar arms, and road wheels of the vehicle are modeled as the rigid multi bodies connected with kinematic constraints. The contact positions and the contact forces between the road wheels and track, and the ground and the the track are simultaneously computed with the solution of the equations of motions of the vehicle consisting of the multibodies. The iterative scheme for the solution of the multi body dynamics of the tracked vehicle is presented and the numerical simulations are conducted.

  • PDF

Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect (내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석)

  • Hong, Seokjin;Kim, Donghyun;Kang, Sinwook;Kang, Keumseok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.461-467
    • /
    • 2016
  • In order to install the floating transport type wind-turbine foundation, water pumping is used to sink the foundation. During this process, its mass and center of gravity, and buoyancy center become continuously changed so that the dynamic stability of the floating foundation become unstable. Dynamic stability analysis of the floating foundation is a complex problem since it should take into account not only the environmental wave, wind, and current loads but also its weight change effect simultaneously considering six-degree-of-freedom motion. In this study, advanced numerical method based on the coupled computational fluid dynamics (CFD) and multi-body dynamics (MBD) approach has been applied to the dynamic stability analysis of the floating foundation. The sloshing effect of foundation internal water is also considered and the floating dynamic characteristics are numerically investigated in detail.

Measuring hand kinematics in handball's game: A multi-physics simulation

  • Kun, Qian;Sanaa, Al-Kikani;H. Elhosiny, Ali
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2022
  • Handball sport, as its name postulates, is a team sport which highly physical workout. During a handball play, several ball impacts are applied on the hands resulting vibration in the forearm, upper arm, shoulders and in general in whole body. Hand has important role in the handball's game. So, understanding about the dynamics and some issues that improve the stability of the hand is important in the sport engineering field. Ulna and radius are two parallel bones in lower arm of human hand which their ends are located in elbow and wrist joint. The type of the joint provides the capability of rotation of the lower arm. These two bones with their ends conditions in the joints constructs a 4-link frame. The ulna is slightly thinner than radius. So, understanding about hand kinematics in handball's game is an important thing in the engineering field. So, in the current work with the aid of a multi-physics simulation, dynamic stability analysis of the ulna and radius bones will be presented in detail.

Development of Aerodynamic Analysis Technology for Wind Turbines using a Multibody Dynamic Analysis Software (다물체 동력학 해석 프로그램을 이용한 풍력발전기 공력해석 기술개발)

  • Rim, Chae Whan;Bang, Je Sung;Cho, Huije;Moon, Seok Jun;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • Simulation technology for dynamic analysis of wind turbine is developed. The Aerodyn and the DAFUL are chosen for aerodynamic analysis and multi-body and flexible body dynamics respectively. Subroutines and variables of Aerodyn developed by NREL are analyzed with hub-height wind data, full field turbulent wind data and Airfoil data. The interface to perform coupled analysis between AeroDyn and DAFUL, GUI for modeling several parts of wind turbines are developed. The program will be extended to analyze the coupled analysis of aerodynamic and hydrodynamic behavior for floating offshore wind turbines.

  • PDF

Study of Dynamic Analysis and Optimization for Control of Two Robots Simultaneously Grasping a Rigid Body Object (강체를 함께 쥔 두 대 로봇의 제어를 위한 동력학적 해석과 최적화 방안 연구)

  • 고진환;송문상;유범상;박상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.507-512
    • /
    • 1997
  • This paper presents a method of finding optitnal joint torques of two robots when they hold an object simultaneously. Although the importance of the multiple cooperating robot system increases for more flcviblc ni;mufacturing automation, dynamic solutions to multi-robot system forming closcd kinematic chain is not easy to find. Newton-Eulcr approach is used for the dynamic formulation of two robots fonn~ng closcd kincmatic chains gmsping a rigid body object. The nrcthodology to optimize the joint torques to satisfy given criterta and obtain bettcr control of the system is discussed. The scheme is illustrated by an example.

  • PDF

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;T. Benker
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.318.1-318
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body fur the carbody was implemented in the Multi-Body-Simulation Program Simpack. (omitted)

  • PDF

Convergence analysis technology for ship loading arm (선박용 로딩암에 적용할 수 있는 융합해석기술에 관한 연구)

  • Lee, Dae-Hee;Noh, Dae-Kyung;Lee, Geun-Ho;Park, Sung-Su;Jang, Joo-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.258-268
    • /
    • 2017
  • In this study, we aim to converge a technology for analyzing the hydraulic circuit of a loading arm with an- other one for analyzing multi-body dynamics by utilizing analysis software SimulationX. Further, this study intends to overcome the limitations of the existing technology for analyzing a hydraulic circuit with a variation at the rotation center of the moving mass and the difficulty of incorporating the behavior in a gravity field. First, the specifications of the hydraulic circuit components were reflected in an analysis model to secure reliability. Hydraulic circuit modeling was then performed using a single analysis model with a verified reliability. Subsequently, the multi-body system (MBS) model of the loading arm was formed. Finally, the analysis model of the hydraulic circuit and the MBS model were converged to check if the circuit analysis result was exactly reflected in the MBS model. The convergence analysis model has development cost-saving effect because it is capable of predicting the dynamic behavior of an object without the prototype.

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

Dynamic Analysis for Mechanical Systems with Multi-Degree of Freedom under Base Excitation Using Relative Acceleration (상대 가속도를 이용한 기초 가진을 받는 다자유도 기계 시스템의 동적 해석)

  • Lee, Tae Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.36-41
    • /
    • 2020
  • Mechanical systems installed in transport devices, such as vehicles, airplanes, and ships, are mostly subject to translational accelerations at the joints during operations. This base acceleration excitation has a large influence on the performance of the system, therefore, its response must be well analyzed. However, the existing methods for dynamic analysis of structures have some limitations in use. This study presents a new numerical method using relative acceleration to solve these limitations. If the governing equation of motion is linear and the mass matrix, the damping matrix, and the stiffness matrix are constant over time in the finite element analysis, the proposed method can be applied to the transient behavior analysis and the harmonic response analysis of the structure. Because it is not necessary to introduce a virtual mass and the rigid body motions are removed from the analysis, it is possible to use not only the direct integration method in the time domain but also the mode superposition method to obtain the dynamic responses. This paper demonstrates with three examples how the present method is suitable for the dynamic analysis of a structure with multi-degree of freedom.

Dynamic Stability Analysis of the Nuclear Fuel Rod Affected by the Swirl Flow due to the Flow Mixer (유동혼합기에 의한 회전유동을 고려한 핵연료 봉의 동적 안정성해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.641-646
    • /
    • 2008
  • Long and slender body with or without flexible supports under severe operating condition can be unstabilized even by the small cross flow. Turbulent flow mixer, which actually increases thermal-hydraulic performance of the nuclear fuel by boosting turbulence, disturbs the flow field around the fuel rod and affects dynamic behavior of the nuclear fuel rods. Few studies on this problem can be found in the literature because these effects depend on the specific natures of the support and the design of the system. This work shows how the dynamics of a multi-span fuel rod can be affected by the turbulent flow, which is discretely activated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was established. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

  • PDF