• Title/Summary/Keyword: Multi-beam antenna

Search Result 92, Processing Time 0.029 seconds

Design of Real-Time Digital Multi-Beamformer of Digital Array Antenna System for MFR (다기능레이다에 적용 가능한 디지털배열안테나 시스템의 실시간 디지털다중빔형성기 설계)

  • Hwang, SungHwan;Kim, HanSaeng;Lim, JaeHwan;Joo, JoungMyoung;Lee, KiWon;Kwon, MinSang;Kim, Woo-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • In this paper, we implement a digital multi-beamformer using FPGA(Field Programmable Gate Array) which has advantages in parallel and real-time data processing. This is accomplished through the use of not only high-speed data communication but also multiple beam forming, which is currently required by MFR(Multi Function Radar). As a result, the beamformer can process 24 Gbps throughput in real-time and form 5 digital beams at the same time. It is also compared to the results of Matlab simulations. We demonstrate how an implemented beamformer can be used in an MFR system by using a digital array antenna.

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Reflector Based Mobile Satellite Antenna with Novel Beam Steering Scheme (새로운 빔 조향 방식을 갖는 반사판 기반의 이동형 위성 통신 안테나)

  • Jung, Young-Bae;Eom, Soon-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • This paper proposes a hybrid antenna with novel beam steering scheme. The antenna have a cassegrain structure composed of two reflectors. The main reflector is designed for high gain performance using parabola curvature, and the sub-reflector is plate and can be rotated by ${\pm}3^{\circ}$. Thus proposed antenna can steer a antenna beam using the inclination of sub-reflector. A feed array composed of 20 elements is adapted as a feeder for electrical beam steering, and the antenna can be possible to steer the beam by the feed array with sub-reflector. Proposed antenna was fabricated to be operated in Ka-band(30.085$\sim$30.885 GHz) for TX and K-band(20.355$\sim$21.155 GHz), which are the operation frequencies of the Korean satellite, Mugunhwa, to provide satellite multi-media service to vehicles. By the performance test, it can be known that the antenna has minimum gain of 47 dBi for TX and 44.4 dBi for TX and can steer the beam by ${\pm}2^{\circ}$ with sub-reflector.

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

A Study on Excitation Error Estimation for Active Phased Array Antenna (능동위상배열안테나의 급전신호 오차 추정에 관한 연구)

  • Jung, Hyeon-Jong;Jung, Jin-Woo;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The active phased array antenna system performs beam steering, multi-beam formation and adaptive beam forming by controlling the amplitude and phase of signals fed to each radiating element. In order to obtain the desired radiation characteristics using an active phased array antenna system, the accurate amplitude and phase of the signal must be fed to each radiating element; however, due to various causes, the signal errors occurs in each radiating element. In this paper, a signal error estimation method of each radiating element is proposed. The proposed method simplifies the process of signal error estimation, and can quickly and accurately calculate the signal error.

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

Radio transmission link design based on a test bed considering a multi-beam active phase array antenna (다중빔 능동위상배열 안테나를 고려한 테스트베드 기반 Radio 전송링크 설계)

  • Youn, Jong-Taek;Kim, Yongi;Park, Hongjun;Park, Juman
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1574-1580
    • /
    • 2021
  • This paper designs and presents the results of an air network simulation radio transmission link applied with a multi-beam active phase array antenna simulator in a testbed system for verifying an air network currently underway as a technology development task. Using the Ku band, the Radio transmission link was designed in consideration of the link budget to satisfy the requirements for the system being developed. Considering short-distance links and long-distance links, the required EIRP and G/T performance scales of multi-beam repeaters and mission planes were applied to confirm the minimum and maximum link margins based on Eb/No. In this Radio Transmission Link design, the application analysis results such as rainfall availability are used to effectively establish standards when selecting the operating radius of the multi-beam relay system and related system standards.

Design of Sub-array Receiver for Active Phase Array Radar (능동위상배열 레이더 부배열 수신기 설계)

  • Yi, Hui-min;Kim, Do-hoon;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • Modern Radars are evolving into MFRs which can search multiple targets simultaneously and then track them. Additionally they should be able to avoid some external jamming signals. Applying to these MFRs, Antennas should be able to perform DBF including to not only real-time beam steering but also multi-beam forming simultaneously. And they can cancel the beam at the specific direction. In this paper, we describe the implementation of sub-array type antenna hardware which can be applying DBF. Also we propose the modified amplitude aperture distribution for suppressing the side lobe level and explain the sub-array receiver design with amplitude tapering. It consists in making the amplitude weighting in 2 steps. In order to compare two weighting cases, we investigate the G/T performance for the array antenna. At the conclusion, we make a comparative study for the dynamic range of every sub-array receiver and present the hardware implementation that is more advantageous for sub-array alignment and calibration in DBF.

Optimal Shape Design of Dual Reflector Antenna Based on Genetic Algorithm (유전 알고리즘 기반의 이중 반사경 안테나 형상최적화 기법)

  • Park, Jung-Geun;Chung, Young-Seek;Kang, Won-June;Shin, Jin-Woo;So, Joon-Ho;Cheon, Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.445-454
    • /
    • 2015
  • In this paper, we propose an optimal design method for a dual reflector antenna(DRA) using the Genetic algorithm. In order to reduce the computational burden during the optimal design, we exploit the iterative physical optics(IPO) to calculate the surface current distribution at each reflector antenna. To improve the accuracy, we consider the shadow effect by the structure and the coupling effect by the multi-reflection based on the iterative MFIE(Magnetic Field Integral Equation). To reduce the number of design variables and generate a smooth surface, we use the Bezier function with the control points, which become the design variables in this paper. We adopt the HPBW(Half Power Beam Width), the FNBW(First Null Beam Width), and the SLL(Side Lobe Level) as the objective or cost functions. To verify the results, we compare them with the those of the commercial tool.