• Title/Summary/Keyword: Multi-bandwidth

Search Result 706, Processing Time 0.028 seconds

Call Admission Control Based on Adaptive Bandwidth Allocation for Wireless Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong Min;Haas, Zygmunt J.
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Provisioning of quality of service (QoS) is a key issue in any multi-media system. However, in wireless systems, supporting QoS requirements of different traffic types is a more challenging problem due to the need to simultaneously minimize two performance metrics - the probability of dropping a handover call and the probability of blocking a new call. Since QoS requirements are not as stringent for non-real-time traffic, as opposed to real-time traffic, more calls can be accommodated by releasing some bandwidth from the already admitted non-real-time traffic calls. If the released bandwidth that is used to handle handover calls is larger than the released bandwidth that is used for new calls, then the resulting probability of dropping a handover call is smaller than the probability of blocking a new call. In this paper, we propose an efficient call admission control algorithm that relies on adaptive multi-level bandwidth-allocation scheme for non-realtime calls. The scheme allows reduction of the call dropping probability, along with an increase in the bandwidth utilization. The numerical results show that the proposed scheme is capable of attaining negligible handover call dropping probability without sacrificing bandwidth utilization.

A Wide-band Multi-layer Antenna Design using Double Resonance (이중공진을 사용한 적층기판용 광대역 안테나 설계)

  • Lee, Kook-Joo;Zhang, Mei-Shan;Lee, Jung-Aun;Han, Myeong-Woo;Kim, Moon-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.431-434
    • /
    • 2011
  • In this paper, bandwidth enhanced design of dielectric resonator antenna fabricated in multi-layer substrate is introduced. The proposed dielectric resonator antenna is operating with fundamental TE101 mode and higher-order TM111 mode. Each resonance frequency is dependent on resonator dimensions. As increasing the height of radiating aperture, the higher-order TM111 mode resonance frequency approach the fundamental TE101 mode resonance frequency and the antenna bandwidth increase by double resonance. Three different aperture height size antennas that operated at 7GHz are fabricated in FR4 multi-layer substrate. Measured 10 dB matching bandwidth is 8 percent for single resonace antenna and 18 percent for double resonance antenna.

A Method for Optimal Power Assignment of the Transponder Input Carriers in the Multi-level & Multi-bandwidth System (Multi-level & Multi-bandwidth 시스템에서 위성중계기 입력반송파 전력의 최적 할당 기법)

  • 김병균;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1167-1176
    • /
    • 1995
  • This paper suggests a method for optimal power assignment of the satellite transponder input carriers in the Multi-level & Multi-bandwidth system. The interference and the noise effects analyzed for the optimal power assignment are intermodulation product caused by the nonlinear transponder characteristics, adjacent channel interference, co-channel interference, and thermal noise in the satellite link. The Fletcher- Powell algorithm is used to determine the optimal input carrier power. The performance criteria for optimal power assignment is classified into 4 categories according to the CNR of destination receiver earth station to meet the requirement for various satellite link environment. We have performed mathematical analysis of objective functions and their derivatives for use in the Fletcher-Powell algorithm, and presented various simulation results based on mathematical analysis. Since the satellite link, it is meaningful to model and analyze these effects in a unified manner and present the method for optimal power assignment of transponder input carriers.

  • PDF

Design of MEMS Gyroscope Using Multi Mass System (다중 질량 시스템을 이용한 자이로스코프 설계)

  • Jeon, Seung-Hoon;Lee, June-Young;Jung, Hyoung-Kyoon;Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.43-45
    • /
    • 2004
  • In this paper, new design concept of MEMS gyroscope using multi mass system is proposed. The gyroscope having wide bandwidth was designed utilizing the multi mass system in order to reduce the degradation of the performance by resonance variation. The multi mass system has more than two masses and separates the resonant peak of each mass. Using MATLAB, the variation of bandwidth and driving displacement according to mass ratio of the multi mass system was analyzed. This result was compared with that of current single mass system gyroscope. In the 7 kHz resonant frequency design, the multi mass system has 395.3Hz bandwidth, which is six times larger than single mass system bandwidth, 58.5 Hz.

  • PDF

Multi-core Scalable Fair I/O Scheduling for Multi-queue SSDs (멀티큐 SSD를 위해 멀티코어 확장성을 제공하는 공정한 입출력 스케줄링)

  • Cho, Minjung;Kang, Hyeongseok;Kim, Kanghee
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.469-475
    • /
    • 2017
  • The emerging NVMe-based multi-queue SSDs provides a high bandwidth by parallel I/O, i.e., each core performs I/O through its dedicated queue in parallel with other cores. To provide a bandwidth share for each application with I/O, a fair-share scheduler that provides a bandwidth share to each core is required. In this study, we proposed a multi-core scalable fair-queuing algorithm for multi-queue SSDs. The algorithm adopts randomization to minimize the inter-core synchronization overheads and provides a weight-proportional bandwidth share to each core. The results of our experiments indicated that the proposed algorithm gives accurate bandwidth partitioning and outperforms the existing FlashFQ scheduler, regardless of the number of cores for a Linux kernel with block-mq.

MMMP: A MAC Protocol to Ensure QoS for Multimedia Traffic over Multi-hop Ad Hoc Networks

  • Kumar, Sunil;Sarkar, Mahasweta;Gurajala, Supraja;Matyjas, John D.
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.41-52
    • /
    • 2008
  • In this paper, we discuss a novel reservation-based, asynchronous MAC protocol called 'Multi-rate Multi-hop MAC Protocol' (MMMP) for multi-hop ad hoc networks that provides QoS guarantees for multimedia traffic. MMMP achieves this by providing service differentiation for multirate real-time traffic (both constant and variable bit rate traffic) and guaranteeing a bounded end-to-end delay for the same while still catering to the throughput requirements of non real time traffic. In addition, it administers bandwidth preservation via a feature called 'Smart Drop' and implements efficient bandwidth usage through a mechanism called 'Release Bandwidth'. Simulation results on the QualNet simulator indicate that MMMP outperforms IEEE 802.11 on all performance metrics and can efficiently handle a large range of traffic intensity. It also outperforms other similar state-of-the-art MAC protocols.

Multi-Interface Multi-Channel R-HWMP Routing Protocol for End-to-End Bandwidth Reservation in IEEE 802.11s WMNs (IEEE 802.11s 무선 메쉬 네트워크에서 종단간 대역폭 예약을 위한 멀티 인터페이스 멀티 채널 R-HWMP 라우팅 프로토콜)

  • Jung, Whoi Jin;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.37-48
    • /
    • 2014
  • Wireless mesh networks have emerged as a key technology in environment that needs wireless multi-hop communication without infrastructure and IEEE 802.11s mesh network standard have currently been established. One of big differences between this standard and the legacy IEEE 802.11 is that MCCA MAC is included to support QoS. MCCA supports bandwidth reservations between neighbors, so it can satisfy the QoS of bandwidth guarantee. However, MCCA has dis-advantages as follow; 1) it can not guarantee end-to-end bandwidth, 2) in multi-interface multi-channel wireless environments, the IEEE 802.11s does not provide a bandwidth reservation protocol and a wireless channel assignment etc. In this paper, we have proposed MIMC R-HWMP, which expands R-HWMP that was proposed in our previous work[3], to support multi-interface multi-channel. By simulation, we showed end-to-end bandwidth guarantee and the increase in the available bandwidth in multi-interface multi-channel wireless mesh networks.

Performance of burst-level bandwidth reservation protocols for multiple hop ATM LANs (다중 HOP으로 구성된 ATM LAN용 버스트 레벨의 대역 예약프로토콜의 성능분석)

  • 윤종호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1200-1207
    • /
    • 1996
  • The paper presents and analyzes two efficient burst-level bandwidth reservation protocols for multi-hop ATM Local Area Networks. With the tell-and-wait (TNW) protocol and the tell-and-go (TNG) protocol[6], a negative acknowledgmen(NACK) message representing the bandwidth starvation on a switch on the source-destnation path can be always sent by a destination. We note that the protocols waste more bandwidth as the round-trip delay increases, since the switches on the path must reserve the bandwidth until the NACK will arrive. Based on this pitfall, the proposed protocols allow and ATM node, rather than a destination node to send a NACK. This allowance can save the needless bandwidth wastage. Using the thinned load approximation method, we show the proposed protocols have good performance and practical simplicity. Thus, the proposed protocols may be candidates for the ABR service in multi-hop ATM LANs and ATM WANs.

  • PDF

Bandwidth-Efficient Multi-Code Modulation Scheme (대역폭 효율적인 다중 부호 변조 방식)

  • Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1601-1607
    • /
    • 2009
  • As a general rule, the orthogonal modulation scheme which is widely used for wireless communications is not appropriate for the high speed data transmission applications due to the low bandwidth efficiency. Therefore, to increase the bandwidth efficiency of the conventional orthogonal modulation, we propose the multi-code trans-(bi-)orthogonal modulation in this paper. It is the combined scheme of multi-code modulation and trans-orthogonal modulation. We can know that the bandwidth efficiency of the proposed scheme is better than that of the conventional orthogonal modulation. Additionally, the receiver complexity of the proposed scheme is lower than that of the conventional orthogonal modulation. The proposed scheme can be used for the physical layer of the high speed wireless digital data transmission applications such as multimedia communications system and high speed personal area networks.

A Stability-Secured Loop Bandwidth Controllable Frequency Synthesizer for Multi-Band Mobile DTV Tuners

  • Kim, Kyeong-Woo;Akram, Muhammad Abrar;Hwang, In-Chul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.141-144
    • /
    • 2015
  • A broadband radio frequency synthesizer for multi-band, multi-standard mobile DTV tuners is proposed, it's loop bandwidth can be calibrated to optimize integrated phase noise performance without the problem of phase noise peaking. For this purpose, we proposed a new third-order scalable loop filter and a scalable charge pump circuit to minimize the variation in phase margin during calibration. The prototype phase-lock loop is fabricated in 180nm complementary metal-oxide semiconductor shows that it effectively prevents phase noise peaking from growing while the loop bandwidth increases by up to three times.