• Title/Summary/Keyword: Multi-band Antenna

Search Result 229, Processing Time 0.024 seconds

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (혼 배열 안테나를 이용한 밀리미터파 수동 이미징 센서 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • We have designed a millimeter-wave passive imaging sensor with multi-horn antenna array. Six horn array antenna is suggested that it is integrated into one housing, and this antenna is effectively configurated m space to assemble with LNA of WR-10 structure. Antenna is designed to have the peak gain of 17.5dBi at the center frequency of 94GHz, and the return loss of less than -25dB in W-band, and the small aperture size of $6mm{\times}9mm$ for antenna configuration with high resolution. LNA is designed to have total gain of more than 55dB and noise figure of less than 5dB for good sensitivity. We made a detector for DC output translation of millimeter-wave signal with zero bias Schottky diode. It is shown that good sensitivity of more than 500mV/mW.

Complementary Beamforming Method Increasing Throughput in ECMA UWB AAS Systems (ECMA UWB AAS 시스템의 전송률 향상을 위한 보완 빔 방법)

  • Kim, Seok-Hyeon;Ji, Young-Gun;Lee, Hong-Won;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.827-835
    • /
    • 2007
  • In this paper, the extension method of data transmission range as adapting AAS(Adaptive Antenna Systems) in ECMA(European Computer Manufacturers Association) standard MB-OFDM(MultiBand-Orthogonal Frequency Division Multiplexing) UWB systems is proposed, and the complementary beamforming method which can solve hidden beam problem when we adapt AAS in CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) systems is proposed. To design the complementary beamforming, Gram-Schmidt orthogonalization is utilized, whose beam pattern exhibits perfect nulling at the main beam angles and provides uniform power for detection of channel utilization out of main beam. The proposed method can be utilized with any arbitrary beamforming when we make main beamforming. Through computer simulation, it can be shown that proposed AAS and complementary beamforming increase data transmission range from 2m to 3.95m in 480Mbps data transmission system and increase throughput about 20% as compared with general UWB AAS systems.

Study on RFID Tag for Stabilization System in Metro (철도 안정화 시스템을 위한 RFID 태그에 대한 연구)

  • Kim, Jae-Sik;Li, Chang-Long;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.249-254
    • /
    • 2014
  • We have studied on the possibility of railway stability system using RFID tag. UHF RFID tag was desinged, manufactured and tested. Proposed UHF tag antenna has PIFA type structure and inset feed multi matching technique was attempted for impedance matching of antenna. The impedance bandwidth (VSWR < 3) of the proposed tag antenna covers 917~923 MHz. Measured peak gain is 3.225 dBi and UHF band with an omni-directional radiation pattern. RFID reader and tag installed in motor car and track, respectively. Then, tag recognition rate according to velocity of car (under 45 km/h) represented 100 %.

Adjacent Interference Analysis between M-WiMAX OFDMA/TDD and WCDMA FDD System in the 2.6 GHz Band Part II : Adjacent Interference Analysis with Smart Antenna in M-WiMAX System (2.6 GHz 대역에서 M-WiMAX OFDMA/TDD 시스템과 WCDMA FDD 시스템간의 상호 간섭 분석 Part II : Adjacent Interference Analysis with Smart Antenna in M-WiMAX System)

  • Wang, Yu-Peng;Ko, Sang-Jun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.588-599
    • /
    • 2007
  • This paper presents the coexistence issues between M-WiMAX TDD and WCDMA FDD systems. To improve the M-WiMAX system performance and to reduce the adjacent channel interference to WCDMA FDD system, transmit and receive beamforming techniques are applied in the base stations of M-WiMAX system. Furthermore, we propose an adjacent channel interference modeling methodology, which captures the effect of transmit beamforming on the adjacent channel interference. Besides, we verify the performance improvement in the uplink of WCDMA system due to the transmit beamforming in M-WiMAX downlink based on the proposed adjacent channel interference modeling methodology. We also verify the performance enhancement due to the receive beamforming in the uplink of M-WiMAX system through system level Monte Carlo simulations, considering random user position, the effect of shadowing and multi-path fading channel. Discussions on the gain of applying transmit and receive beamforming in M-WiMAX system comparing the case of SISO system are also included. Furthermore, we present the performance of cosited M-WiMAX and WCDMA systems, considering commercial deployment, additional channel filter at base stations and the effects of TxBF and RxBF.

Analysis of Throughput Field Test Data Acquired Using Vehicle Mounted Multi-Band MIMO Antenna (다중대역 MIMO 안테나의 차량탑재 필드테스트 결과 분석)

  • Kim, Seung-Ho;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.745-751
    • /
    • 2018
  • This paper reports on the design of a multiband multiple-input and multiple-output(MIMO) antenna for long-term evolution(LTE) vehicular communication and includes an analysis of the throughput field test results that were acquired by mounting the antenna to a vehicle. The antenna used for the field test was designed as a planar structure and included multiple stubs to obtain multiband resonant characteristics operating in the LTE(0.8~0.9 GHz, 1.7~2.2 GHz), Wi-Fi(2.4~2.48 GHz), and wireless access in vehicular environments (WAVE)(5.8~5.9 GHz) frequency bands. For the field test, antenna prototypes were mounted on the dashboard and roof of a vehicle and connected to the experimental LTE modem. The data transfer rate(throughput), signal-to-interference-plus-noise ratio(SINR), and reference signal received quality(RSRQ) were measured and analyzed in various real-world radio wave environments. Based on these results, the relationship between the SINR and throughput according to the field intensity is confirmed.

A Stripline 10-Way Power Divider for the Feed Network of an S-band Linear Array Antenna (S-대역 선형 배열 안테나의 급전 회로를 위한 스트립라인 10-출력 전력분배기)

  • Park, Il-Ho;Kim, Rak-Young;Park, Jung-Yong;Jeong, Myung-Deuk;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.280-288
    • /
    • 2009
  • In this paper, a high-power and low-loss stripline 10-way power divider is designed and fabricated fur the feed network of an S-band linear array antenna with Chebyshev current distribution which has a narrow beam width and low side lobe level(SLL) of 35 dB or more. The unit cell of the power divider is based on a T-junction power divider and the whole divider is comprised of the cascaded unit cells. The multi-stage impedance transformer and modified ring hybrid are used in designing the power divider for performance improvement. And the reflection loss and insertion loss are improved by modifying a connector structure for a coaxial-to-stripline transition.

A Design on the Four-Horn Triple-Mode Type Monopulse Feeder at X-Band (X-대역 4혼 삼중 모드 모노펄스 급전기 설계)

  • Kim, Chan-Hong;Kim, Seung-Gak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.528-536
    • /
    • 2010
  • A monopulse feeder gives the most important impact upon the radiation pattern characteristics of a multi-function radar or a tracking radar which uses the space feed. It is described that the triple-mode type monopulse feeder which possesses the optimum aperture illumination for three monopulse channels is designed and measured in this paper. The measured results show that the designed feeder has not only the characteristics of the optimum aperture illimination in each channel and also very low return loss over the 10 % of fractional bandwidth at X-band. This means that the feeder provides the antenna system with low sidelobe level and high monopulse slope characteristics.

Design and Fabrication of Dual Band Antenna using Skeleton Slot Radiator (Skeleton Slot 구조를 이용한 이중 대역 안테나의 설계 및 제작)

  • 김운필;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.40-46
    • /
    • 2002
  • In this paper we design and fabricate the Skeleton slot antenna which operates dually in GSM 900 and 1800 bands. Its simulation results are also compared with the measured ones. The original Skeleton slot antennas had the problems of unsatisfactory VSWR characteristics and considerably changing horizontal radiation patterns at high frequencies, but the proposed design improves these problems using multi-path feeding network and folding structure. The size of the radiator is 154 $\times$ 106(mm), and its height is 33(mm), and the reflector of 190$\times$190(mm) is used. The material of the radiator and reflector is 1mm-thick aluminum. Using NTC process reduces the mass production cost significantly. The measured return losses are 13.7 % at 900 MHz band and 16.4 % at 1800 MHz band, respectively. The horizontal radiation beam width is stable within $\pm$ 1$^{\circ}$ at both frequency bands.

Radio transmission link design based on a test bed considering a multi-beam active phase array antenna (다중빔 능동위상배열 안테나를 고려한 테스트베드 기반 Radio 전송링크 설계)

  • Youn, Jong-Taek;Kim, Yongi;Park, Hongjun;Park, Juman
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1574-1580
    • /
    • 2021
  • This paper designs and presents the results of an air network simulation radio transmission link applied with a multi-beam active phase array antenna simulator in a testbed system for verifying an air network currently underway as a technology development task. Using the Ku band, the Radio transmission link was designed in consideration of the link budget to satisfy the requirements for the system being developed. Considering short-distance links and long-distance links, the required EIRP and G/T performance scales of multi-beam repeaters and mission planes were applied to confirm the minimum and maximum link margins based on Eb/No. In this Radio Transmission Link design, the application analysis results such as rainfall availability are used to effectively establish standards when selecting the operating radius of the multi-beam relay system and related system standards.

A Multi-Polarization Reconfigurable Microstrip Antenna Using PIN Diodes (PIN 다이오드를 이용한 다중 편파 재구성 마이크로스트립 안테나)

  • Song, Taeho;Lee, Youngki;Park, Daesung;Lee, Seokgon;Kim, Hyoungjoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.492-501
    • /
    • 2013
  • In this paper, a multi polarization reconfigurable microstrip antenna that can be used selectively for four polarizations(vertical polarization, horizontal polarization, right hand circular polarization, left hand circular polarization) at the S-band is presented. The proposed antenna consists of four PIN diodes and a microstrip patch with a cross slot and a circular slot and is fed by utiliting electromagnetic coupling between the microstrip patch and the feed line. The proposed antenna has a DC bias network to supply DC voltage to each PIN diode and the polarization can be determined by controlling the ON /OFF states of four PIN diodes. The fabricated antenna has a VSWR below 2 in the vertical polarization(3.17~3.21 GHz), the horizontal polarization(3.16~3.20 GHz), the left hand circular polarization (3.08~3.19 GHz), and the right hand circular polarization(3.10~3.2 GHz) frequency bands. The designed antenna has the cross polarization level higher than 20 dB, a gain over 5 dBi for the linear polarization states, and 3 dB axial ratio bandwidth wider than 50 MHz in the circular polarization states.