• Title/Summary/Keyword: Multi-WSN

Search Result 113, Processing Time 0.021 seconds

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

Confidential Convergecast Based on Random Linear Network Coding for the Multi-hop Wireless Sensor Network

  • Davaabayar Ganchimeg;Sanghyun Ahn;Minyeong Gong
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.252-262
    • /
    • 2024
  • The multi-hop wireless sensor network (WSN) suffers from energy limitation and eavesdropping attacks. We propose a simple and energy-efficient convergecast mechanism using inter-flow random linear network coding that can provide confidentiality to the multi-hop WSN. Our scheme consists of two steps, constructing a logical tree of sensor nodes rooted at the sink node, with using the Bloom filter, and transmitting sensory data encoded by sensor nodes along the logical tree upward to the sink where the encoded data are decoded according to our proposed multi-hop network coding (MHNC) mechanism. We conducted simulations using OMNET++ CASTALIA-3.3 framework and validated that MHNC outperforms the conventional mechanism in terms of packet delivery ratio, data delivery time and energy efficiency.

A Multi-level Energy Efficient Routing Algorithm on Fixed Radio Wave Radius in Wireless Sensor Network (고정 전파 파장 반경에 의한 무선 센서네트워크에서의 다단계 에너지 효율적인 라우팅 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.69-76
    • /
    • 2013
  • A lot of researches have been done to improve the energy efficiency of Wireless Sensor Networks. But all the current researches are based on the idea of direct communication between cluster head and sink node. Previous results assume that node can intelligently regulate signal energy according to the distance between nodes. It is difficult to implement algorithms based on this assumption. We present a multi-level routing algorithm from the sink node to all other nodes which have fixed radio wave radius. We also show the energy saving efficiency and the implementation in real WSN using the simulation result.

Design of ESN(Educational Sensor Network) for interpretation of the data

  • Park, In-Deok;Paek, Seung-Eun;Kim, Si-Kyung
    • The Journal of Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper has focused on the development of an educational sensor network (ESN) based on wireless sensor networks(WSN) and pervasive monitoring systems for students' activity during scientific experiments. A number of WSN systems have been proposed with integrated wireless transmission, mounted sensor boards and local processing. However, there is no trail to employ WSN on the educational field. In this paper, to facilitate research and development using wireless sensor network and multi-sensor data fusion, the educational sensor network (ESN) hardware development platform is presented. The ESN project is conducted over one semester time period (Spring Semesters). It involves approximately twenty middle school students who enrolled a gifted program in Kongju National University. Though under prepared, these students are in general highly motivated to learning specially when presented with the ESN project. An ESN project such as this is expected to provide an excellent means for teaching and learning scientific and mathematical principles.

  • PDF

Converged Mobile Cellular Networks and Wireless Sensor Networks for Machine-to-Machine Communications

  • Shan, Lianhai;Li, Zhenhong;Hu, Honglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.147-161
    • /
    • 2012
  • In recent years, machine-to-machine (M2M) communications are under rapid development to meet the fast-increasing requirements of multi-type wireless services and applications. In order to satisfy M2M communications requirements, heterogeneous networks convergence appears in many areas, i.e., mobile cellular networks (MCNs) and wireless sensor networks (WSNs) are evolving from heterogeneous to converged. In this paper, we introduce the system architecture and application requirement for converged MCN and WSN, where mobile terminals in MCN are acting as both sensor nodes and gateways for WSN. And then, we discuss the joint optimization of converged networks for M2M communications. Finally, we discuss the technical challenges in the converged process of MCN and WSN.

Design and Implementation of Multi-Sensor based Smart Sensor Network using Mobile Devices (모바일 디바이스를 사용한 멀티센서 기반 스마트 센서 네트워크의 설계 및 구현)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • Wireless Sensor Networks is applied to improvement of life convenience or service like U-City as well as environment pollution, tunnel and structural health monitoring, storm, and earthquake diagnostic system. To increase the usability of sensor data and applicability, mobile devices and their facilities allow the applications of sensor networks to give mobile users and actuators the results of event detection at anytime and anywhere. In this paper, we present MUSNEMO(Multi-sensor centric Ubiquitous Smart sensor NEtwork using Mobile devices) developed system for providing more efficient and valuable information services with a variety of mobile devices and network camera integrated to WSN. Our system is performed based on IEEE 802.15.4 protocol stack. To validate system usability, we built sensor network environments where were equipped with five application sensors such magnetic, photodiode, microphone, motion and vibration. We also built and tested proposed MUSNEMO to provide a novel model for event detection systems with mobile framework.

A Routing Algorithm for Wireless Sensor Networks with Ant Colony Optimization (개미 집단 최적화를 이용한 무선 센서 네트워크의 라우팅 알고리즘)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.131-137
    • /
    • 2007
  • Recently, Ant Colony Optimization (ACO) is emerged as a simple yet powerful optimization algorithm for routing and load-balancing of both wired and wireless networks. However, there are few researches trying to adopt ACO to enhance routing performance in WSN owing to difficulties in applying ACO to WSN because of stagnation effect. In this paper, we propose an energy-efficient path selection algorithm based on ACO for WSN. The algorithm is not by simply applying ACO to routing algorithm but by introducing a mechanism to alleviate the influence of stagnation. By the simulation result, the proposed algorithm shows better performance in data propagation delay and energy efficiency over Directed Diffusion which is one of the outstanding schemes in multi-hop flat routing protocols for WSN. Moreover, we checked that the proposed algorithm is able to mitigate stagnation effect than simple ACO adoption to WSN.

  • PDF

Multi-Modal Sensing M2M Healthcare Service in WSN

  • Chung, Wan-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1090-1105
    • /
    • 2012
  • A multi-modal sensing M2M healthcare monitoring system for the continuous monitoring of patients under their natural physiological states or elderly persons with chronic diseases is summarized. The system is designed for homecare or the monitoring of the elderly who live in country side or small rest home without enough support from caregivers or doctors, instead of patient monitoring in big hospital environment. Further insights into the natural cause and progression of diseases are afforded by context-aware sensing, which includes the use of accelerometers to monitor patient activities, or by location-aware indoor tracking based on ultrasonic and RF sensing. Moreover, indoor location tracking provides information about the location of patients in their physical environment and helps the caregiver in the provision of appropriate support.

Design of Border Surveillance and Control System Based on Wireless Sensor Network (WSN 기반 국경 감시 및 제어 시스템 설계)

  • Hwang, Bo Ram;An, Sun Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 2015
  • WSN (Wireless Sensor Network) based on low-power is one of the core technologies in the ubiquitous society. In this paper, we present a border surveillance and control system in WSN environment. The system consists of static sensor node, mobile sensor node, static gateway, mobile gateway, server and mobile application. Mobile applications are divided into user mode and manager mode. So users monitor border surveillance through mobile phone and get information of border network environment without time and space constraints. In manager mode, for the flexible operation of nodes, manager can update to the software remotely and adjust the position of the mobile node. And also we implement a suitable multi-hop routing protocol for scalable low-power sensor nodes and confirm that the system operates well in WSN environment.