• Title/Summary/Keyword: Multi-Site Test

Search Result 100, Processing Time 0.03 seconds

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Experimental Results of New Ion Source for Performance Test

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF

An Accuracy Evaluation of Algorithm for Shoreline Change by using RTK-GPS (RTK-GPS를 이용한 해안선 변화 자동추출 알고리즘의 정확도 평가)

  • Lee, Jae One;Kim, Yong Suk;Lee, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.81-88
    • /
    • 2012
  • This present research was carried out by dividing two parts; field surveying and data processing, in order to analyze changed patterns of a shoreline. Firstly, the shoreline information measured by the precise GPS positioning during long duration was collected. Secondly, the algorithm for detecting an auto boundary with regards to the changed shoreline with multi-image data was developed. Then, a comparative research was conducted. Haeundae beach which is one of the most famous ones in Korea was selected as a test site. RTK-GPS surveying had been performed overall eight times from September 2005 to September 2009. The filed test by aerial Lidar was conducted twice on December 2006 and March 2009 respectively. As a result estimated from both sensors, there is a slight difference. The average length of shoreline analyzed by RTK-GPS is approximately 1,364.6 m, while one from aerial Lidar is about 1,402.5 m. In this investigation, the specific algorithm for detecting the shoreline detection was developed by Visual C++ MFC (Microsoft Foundation Class). The analysis result estimated by aerial photo and satellite image was 1,391.0 m. The level of reliability was 98.1% for auto boundary detection when it compared with real surveying data.

Anterior Talofibular Ligament and Superior Extensor Ankle Retinaculum Thicknesses: Relationship with Balance

  • Malloy, Brooke;Furrow, David;Cook, Haily;Smoot, Elizabeth;Cash, Lindsey;Aron, Adrian;Jagger, Kristen;Harper, Brent
    • Journal of Korean Foot and Ankle Society
    • /
    • v.23 no.4
    • /
    • pp.173-182
    • /
    • 2019
  • Purpose: This study determined if anterior talofibular ligament (ATFL)/superior extensor ankle retinaculum (SEAR) thicknesses are related to dynamic balance in individuals with chronic ankle instability (CAI). Materials and Methods: The subjects were 14 males and 15 females (age=24.52±3.46 years). Ankle instability was assessed using the Cumberland Ankle Instability Tool (CAIT) with a cut off score of 25 to define two groups. SonoSite MTurbo (Fugifilm Sonosite, Inc.) musculoskeletal ultrasound (MSKUS) unit was used to assess ATFL and SEAR thicknesses. Dynamic balance was measured with the Y Balance Test (YBT) and two NeuroCom balance tests. Results: There were no significant differences in the average ATFL thickness between stable and unstable ankles in those subjects with CAI (0.25±0.03 cm and 0.21±0.05 cm, respectively) or in the SEAR thickness (0.09±0.04 cm and 0.10±0.03 cm, respectively). There were also no significant differences in the right and left ATFL thicknesses (0.23±0.07 cm and 0.21±0.04 cm, respectively) or the SEAR thicknesses (0.09±0.01 cm and 0.09±0.01 cm, respectively) in those without CAI. There were no differences between limbs in composite scores on YBT in those with CAI (p=0.35) and those without CAI (p=0.33). There was a moderate correlation between the left SEAR thickness and the large forward/backward perturbations on the NeuroCom (Natus) motor control test (r=0.51, p=0.006 and r=0.54, p=0.003, respectively). Conclusion: There were no differences in the ATFL/SEAR thicknesses or balance measures between or within the groups, likely because CAI is multi-factorial and related to mechanisms other than tissue changes alone. More sensitive technology and a better definition of the measurement process may provide more definitive results.

Target candidate fish species selection method based on ecological survey for hazardous chemical substance analysis (유해화학물질 분석을 위한 생태조사 기반의 타깃 후보어종 선정법)

  • Ji Yoon Kim;Sang-Hyeon Jin;Min Jae Cho;Hyeji Choi;Kwang-Guk An
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.109-125
    • /
    • 2023
  • This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as "bad conditions". Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.

Estimation of Shear Wave Velocity of Rockfill Zone by Dynamic Analysis using Micro-earthquake Records (미소지진 계측기록을 활용한 동적응답해석에 의한 댐 사력존 전단파속도 산정)

  • Ha, Ik Soo;Lee, Soo Gwun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.141-152
    • /
    • 2015
  • The objective of this study is to estimate shear wave velocity of rockfill materials by making practical use of the micro-earthquake records which are ordinarily obtained at a domestic rockfill dam and to verify its applicability. Micro-earthquake records were obtained at the site of Heongseong dam and Soyanggang dam, which are the existing multi-purpose dams in Korea. In the previous study, the fundamental periods of each dam were already evaluated by analyzing the response spectrum of the observed records. In this study, numerical analyses varying shear moduli of rockfill zone were carried out using the acceleration histories measured at the abutment as input ground motions. From comparison between the fundamental periods calculated by numerical analyses and measured records, the shear wave velocities with depth were estimated. It is found that the effect of different earthquake events on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships and field test results, applicability of suggested method is verified. Therefore, in case that it is impossible to conduct field tests and estimation is preliminary, the suggested method can be practically used.

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.