• 제목/요약/키워드: Multi-Signal

검색결과 2,285건 처리시간 0.031초

통신 신호 방향 탐지를 위한 광대역 다중 채널 수신기 개발 (Development of Wideband Multi-Channel Receiver for Direction Finding of Communication Signals)

  • 장재원;안준일;주증민;이동원
    • 한국군사과학기술학회지
    • /
    • 제24권5호
    • /
    • pp.527-536
    • /
    • 2021
  • In wireless environments, wideband receivers are used in a communication intelligent system to detect unknown signals and obtain azimuth information. To design a wideband receiver that performs multiple signal detection and direction finding simultaneously, it is necessary to consider a reception structure composed of multiple channels. In this paper, we propose a wideband multi-channel receiver for direction finding of unknown wideband communication signals including frequency hopping signals. A signal processing method for detecting received signals and estimating azimuth information is presented, and components of the manufactured wideband receiver are described. In addition, test results of the signal detection performance by mounting the proposed wideband multi-channel receiver on the flight system are included.

다채널 스피커 시스템을 위한 오디오 신호지 직렬 전송 (Serial Transmission of Audio Signals for Multi-channel Speaker Systems)

  • 권오균;송문빈;이승원;이영원;정연모
    • 한국음향학회지
    • /
    • 제24권7호
    • /
    • pp.387-394
    • /
    • 2005
  • 본 논문에서는 다채널 오디오 시스템의 스피커들을 직렬로 연결하기 위한 새로운 오디오 신호 전송 기법을 제시한다. 다채널 오디오 본체로부터의 아날로그 신호는 디지털 신호로 변환되고 신호 처리 과정을 거쳐서 직렬로 연결된 각 스피커에 전달된다. 여기서 신호 처리 과정은 오디오 신호의 특성을 고려한 데이터 압축과 전송을 위한 패킷 생성을 포함한다. 각 스피커는 전달된 패킷으로부터 해당하는 디지털 신호만을 검출하여 아날로그 신호로 다시 변환하여 음향을 재생한다. 제시된 모든 기능은 VHDL을 사용하여 모델링되었으며 FPGA 칩으로 구현하였고 실제 다채널 오디오 시스템에서 테스트하였다.

바이오응용 무선전력전달을 위한 13.56 MHz CMOS 다단 정류기 (A 13.56 MHz CMOS Multi-Stage Rectifier for Wireless Power Transfer in Biomedical Applications)

  • 차혁규
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.35-41
    • /
    • 2013
  • $0.18-{\mu}m$ CMOS 반도체 공정을 이용하여 신체에 깊이 이식되어 있는 deep implant 의료 전자기기에서의 무선전력전달을 위한 고효율의 다단 정류기 (multi-stage rectifier)를 구현하였다. 세 개의 단계로 이루어진 정류기는 cross-coupled 된 구조를 이용하여 외부에서 전달되는 작은 AC 입력 신호를 boost하여 1.2-1.5 V의 DC 출력 신호를 implant 전자기기로 전달한다. 설계 된 정류기는 13.56 MHz에서 0.6-Vpp의 작은 RF 입력 신호와 $10-k{\Omega}$의 load 저항이 연결 된 측정 환경에서 최대 70 %의 전력 변환 효율을 달성하였다.

다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출 (Automated Prostate Cancer Detection on Multi-parametric MR imaging via Texture Analysis)

  • 김영지;정주립;홍헬렌;황성일
    • 한국멀티미디어학회논문지
    • /
    • 제19권4호
    • /
    • pp.736-746
    • /
    • 2016
  • In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.

다중 모달 생체신호를 이용한 딥러닝 기반 감정 분류 (Deep Learning based Emotion Classification using Multi Modal Bio-signals)

  • 이지은;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.146-154
    • /
    • 2020
  • Negative emotion causes stress and lack of attention concentration. The classification of negative emotion is important to recognize risk factors. To classify emotion status, various methods such as questionnaires and interview are used and it could be changed by personal thinking. To solve the problem, we acquire multi modal bio-signals such as electrocardiogram (ECG), skin temperature (ST), galvanic skin response (GSR) and extract features. The neural network (NN), the deep neural network (DNN), and the deep belief network (DBN) is designed using the multi modal bio-signals to analyze emotion status. As a result, the DBN based on features extracted from ECG, ST and GSR shows the highest accuracy (93.8%). It is 5.7% higher than compared to the NN and 1.4% higher than compared to the DNN. It shows 12.2% higher accuracy than using only single bio-signal (GSR). The multi modal bio-signal acquisition and the deep learning classifier play an important role to classify emotion.

Decimation Chain Modeling for Dual-Band Radio Receiver and Its Operation for Continuous Packet Connectivity

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of information and communication convergence engineering
    • /
    • 제13권4호
    • /
    • pp.235-240
    • /
    • 2015
  • A decimation chain for multi-standard reconfigurable radios is presented for 900-MHz and 1,900-MHz dual-band cellular standards with a data interpolator based on the Lagrange method for adjusting the variable data rate to a fixed data rate appropriate for each standard. The two proposed configurations are analyzed and compared to provide insight into aliasing and the signal bandwidth by means of a newly introduced measure called interpolation error. The average interpolation error is reduced as the ratio of the sampling frequency to the signal BW is increased. The decimation chain and the multi-rate analog-to-digital converter are simulated to compute the interpolation error and the output signal-to-noise ratio. Further, a method to operate the above-mentioned chain under a compressed mode of operation is proposed in order to guarantee continuous packet connectivity for inter-radio-access technologies. The presented decimation chain can be applied to LTE, WCDMA, GSM multi-mode multi-band digital front-end which will ultimately lead to the software-defined radio.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

$0.35{\mu}m$ 표준 CMOS 공정에서 제작된 저전력 다중 발진기 (A Low Power Multi Level Oscillator Fabricated in $0.35{\mu}m$ Standard CMOS Process)

  • 채용웅;윤광열
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권8호
    • /
    • pp.399-403
    • /
    • 2006
  • An accurate constant output voltage provided by the analog memory cell may be used by the low power oscillator to generate an accurate low frequency output signal. This accurate low frequency output signal may be used to maintain long-term timing accuracy in host devices during sleep modes of operation when an external crystal is not available to provide a clock signal. Further, incorporation of the analog memory cell in the low power oscillator is fully implementable in a 0.35um Samsung standard CMOS process. Therefore, the analog memory cell incorporated into the low power oscillator avoids the previous problems in a oscillator by providing a temperature-stable, low power consumption, size-efficient method for generating an accurate reference clock signal that can be used to support long sleep mode operation.

근접한 두 신호원에 의한 와전류 신호의 간섭 효과 (An Interaction Effect of Eddy Current Signals Due to the Neighboring Signal Sources)

  • 정용무
    • 비파괴검사학회지
    • /
    • 제11권1호
    • /
    • pp.7-12
    • /
    • 1991
  • The multi-frequency eddy current technique has been used for evaluation of various type of defects in tubings. However, this technique is not sufficient to detect and evaluate the defect in tubings if the defect is located in the geometrically complicated area(e. g. tube support plate, anti-vibration bar, tubesheet area) and mixing residue signal is significant to the defect signal. In order to improve the reliability of the multi-frequency eddy current technique, the effect of the interaction of mixing residue after frequency mixing with a function of distances between the defect and the tube support plate boundary has been analyzed theoretically. The experimental results have been discussed with the theoretical developments. The calculation shows the interaction between the two neighboring signal sources could be significant within the range of approximately 1.0mm with the experimental condition.

  • PDF

FPGA를 이용한 심전도 전처리용 적응필터 설계 (Design of FPGA Adaptive Filter for ECG Signal Preprocessing)

  • 한상돈;전대근;이경중;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.285-291
    • /
    • 2001
  • In this paper, we designed two preprocessing adaptive filter - high pass filter and notch filter - using FPGA. For minimizing the calculation load of multi-channel and high-resolution ECG system, we utilize FPGA rather than digital signal processing chip. To implement the designed filters in FPGA, we utilize FPGA design tool(Altera corporation, MAX-PLUS II) and CSE database as test data. In order to evaluate the performance in terms of processing time, we compared the designed filters with the digital filters implemented by ADSP21061(Analog Devices). As a result, the filters implemented by FPGA showed better performance than the filters based on ADSP21061. As a consequence of examination, we conclude that FPGA is a useful solution in multi-channel and high-resolution signal processing.

  • PDF