• Title/Summary/Keyword: Multi-Section Transformer

Search Result 7, Processing Time 0.023 seconds

A General Design Method for the Broadband Multi-Section Power Divider (광대역 다단 전력 분배기의 일반화된 설계 방법)

  • Park, Jun-Seok;Kim, Hyeong-Seok;Im, Jae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.85-91
    • /
    • 2002
  • A novel multi-section power divider configuration is Proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a Planar multi-section three-Ports hybrid and a waveguide transformer design procedures. The multi∼section power divider is based on design theory of the optimum quarter- wave transformer Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode∼matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Simulation and experiment show excellent performance of multi section power divider.

A Study on the Design and Structure of A Microwave Broadband Multi-Section Power Divider (마이크로파대 광대역 다단 전력분배기의 설계방법과 구조에 관한 연구)

  • Park, Jun-Seok;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1829-1831
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Simulation and experiment show excellent performance of multi section power divider.

  • PDF

Punched-SIW Multi-Section E-Plane Transformer (천공된 기판 집적 도파관 다단 E-Plane 변환기)

  • Cho, Hee-Jin;Byun, Jindo;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.259-269
    • /
    • 2013
  • In this paper, we propose an SIW(Substrate Integrated Waveguide) multi-section E-plane transformer using air-holes for an SIW system with variable thicknesses. Air-holes are inserted into a SIW E-plane quarter wavelength transformer for matching an E-plane impedance discontinuity. A PSIW(Punched Substrate Integrated Waveguide) consisted of air-holes has an SIW characteristic impedance tunability because of reducing a equivalent shunt capacitance of the SIW. And, a PSIW multi-section E-plane transformer is implemented for improving a matching bandwidth by using the Chebyshev polynomial. The measurement results of PSIW double-section E-plane transformer show that the insertion loss($S_{21}$) is $1.57{\pm}0.11$ dB and input return loss($S_{11}$) is more than 15 dB from 11.45 GHz to 13.6 GHz.

Design of A Microwave Planar Broadband Power Divider (마이크로파대 평면형 광대역 전력 분배기 설계)

  • Park, Jun-Seok;Kim, hyeong-Seok;Ahn, Dal;Kang, Kwang-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.651-658
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Thus, each section of the designed waveguide transformer should be operated with evanescent mode over the whole design frequency band of the proposed microwave broadband power divider. This paper presents several simulations and experimental results of multi-section power divider to show validity of the proposed microwave broadband power divider configuration. Simulation and experiment show excellent performance of multi section power divider.

  • PDF

Dual-scale BERT using multi-trait representations for holistic and trait-specific essay grading

  • Minsoo Cho;Jin-Xia Huang;Oh-Woog Kwon
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.82-95
    • /
    • 2024
  • As automated essay scoring (AES) has progressed from handcrafted techniques to deep learning, holistic scoring capabilities have merged. However, specific trait assessment remains a challenge because of the limited depth of earlier methods in modeling dual assessments for holistic and multi-trait tasks. To overcome this challenge, we explore providing comprehensive feedback while modeling the interconnections between holistic and trait representations. We introduce the DualBERT-Trans-CNN model, which combines transformer-based representations with a novel dual-scale bidirectional encoder representations from transformers (BERT) encoding approach at the document-level. By explicitly leveraging multi-trait representations in a multi-task learning (MTL) framework, our DualBERT-Trans-CNN emphasizes the interrelation between holistic and trait-based score predictions, aiming for improved accuracy. For validation, we conducted extensive tests on the ASAP++ and TOEFL11 datasets. Against models of the same MTL setting, ours showed a 2.0% increase in its holistic score. Additionally, compared with single-task learning (STL) models, ours demonstrated a 3.6% enhancement in average multi-trait performance on the ASAP++ dataset.

A study on Protective Coordination of MCA for Performing of the Pad Mounted Transformer's inside Protective Device (지상변압기의 내부 보호장비 작동을 위한 MCA 보호협조에 대한 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.5-7
    • /
    • 2022
  • KEPCO's plan is undergoing a trial operation to replace the open-loop section with ring main units configuration where underground distribution lines are installed, by linking the multi-way circuit breakers auto (MCA) on the power side of each pad-mounted transformer. However, ring main units application mentioned above may cause the ripple effects, when implementing the configuration without a study of protection coordination. Because ring main units with classical pre-set protection devices contribution in fault condition didn't consider yet. For the reliable ring main units operation, it is necessary to resolve several protection issues such as the protection coordination with substation side, prevention of the transformer inrush current. These issues can radically deteriorate the distribution system reliability Hence, it is essential to design proper protection coordination to reduce these types of problems. This paper presents a scheme of ring main units' configuration and MCA's settings of time-current curves to preserve the performance of protection coordination among the switchgears considering constraints, e.g. prevention of the ripple effects (on the branch section when a transformer failure occurs and the mainline when a branch line failure occurs). It was confirmed that the propagation of the failure for each interrupter segment could be minimized by applying the proposed TCC and the interrupter settings for the MCAs (branch, transformer). Further, it was verified that the undetected area of the distribution automation system (DAS) could be supplemented by having the MCA configurated ring main units operate first, instead of the internal protection equipment in the transformer such as the fuse, STP when a transformer failure occurs.

A Miniaturized Broadband Impedance Transformer Employing Periodic Ground Structure for Application to Silicon RFIC (주기적 접지구조를 이용한 실리콘 RFIC용 광대역 소형 임피던스 변환기)

  • Young, Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.483-490
    • /
    • 2011
  • Using a coplanar waveguide employing periodic ground structure (PGS) on silicon substrate, a highly miniaturized and broadband impedance transformer was developed for application to low impedance matching in broadband. Concretely, the multi-section transformer was designed using Chebyshev polynomials design technique for ultra broadband operation. Its size was 0.026 $m^2$ on silicon substrate, which was 8.7 % of the one fabricated by conventional coplanar waveguide on silicon substrate. The transformer showed a good RF performance over a ultra broadband from 8 - 49.5 GHz.