• Title/Summary/Keyword: Multi-Response Surface Optimization

Search Result 120, Processing Time 0.028 seconds

A Study on the Optimum Design of Multi-Object Dynamic System for the Rail Vehicle (철도차량 동적 진동특성을 고려한 다목적함수 최적설계)

  • Park, Chan-Kyoung;Lee, Kwang-Ki;Kim, Ki-Hwan;Hyun, Seung-Ho;Park, Choon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.894-899
    • /
    • 2000
  • Optimization of 26 design variables selected from suspension characteristics for Korean High Speed Train (KHST) is performed according to the minimization of 58 responses which represent running safety and ride comfort for KHST and analyzed by using the each response surface model from stochastic design experiments. Sensitivity of design variables is also analyzed through the response surface model which ineffective design prameters to the performance index are screened by using stepwise regression method. The response surface models are used for optimizing design variables through simplex algorism. Values of performance index simulated by optimized design parameters are totally lower than those by initial design parameters. It shows that this method is effective for optimizing multi-design variables to multi-object function.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1726-1731
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

  • PDF

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.

Approximate Multi-Objective Optimization of Bike Frame Considering Normal Load (수직하중을 고려한 자전거 프레임의 다중목적 최적설계)

  • Chae, Yunsik;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.211-216
    • /
    • 2015
  • Recently, because of the growth in the leisure industry and interest in health, the demand for bicycles has increased. In this research, considering the vertical load on a bike frame under static state conditions, the deflection and mass of the bike frame were minimized by satisfying the service condition and performing optimization. The thickness of the bicycle-frame tube was set to a design variable, and its sensitivity was confirmed by an analysis of means (ANOM). To optimize the solution, a response-surface-method (RSM) model was constructed using D-Optimal and central composite design(CCD). The optimization was performed using a non-dominant sorting genetic algorithm (NSGA-II), and the optimal solution was verified by finite-element analysis.

Modal analysis and multi-objective optimization of lightweight analysis of the main beam of the concrete spreader

  • Zhang, Shiying;Song, Bo;Zhang, Ke;Chen, Hongliang;Zou, Defang;Liu, Chang;Zhu, Chunxia;Li, Dong;Yu, Wenda
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.465-478
    • /
    • 2021
  • On the premise of ensuring that the static performance of the concrete spreader is met, the first-order natural frequency of the concrete spreader is increased, and the weight of the main beam is reduced. ANSYS is used as an analysis tool to perform modal analysis on the concrete spreader. The natural frequency, mode shape and modal test verification will be obtained to ensure the accuracy of finite element model analysis. Using the ANSYS designxplorer module, the size of the main beam is set, and the response surface model between the parameter variables and the optimization objective is established according to the experimental design points. Screening algorithm and MOGA algorithm are used to multi-optimize the stress, first-order natural frequency and girder weight, and the optimal solution is obtained by comparison. The results of modal analysis are consistent with those of the experiment, and a set of optimal solutions is obtained through the optimization algorithm. The optimal solution obtained can meet the purpose of increasing the first-order natural frequency of the concrete spreader and reducing the weight of the main beam under the premise of ensuring the overall dynamic and static performance of the concrete spreader.

Analysis and Reduction of Escalator Vibration Using the Response Surface Methodology (반응 표면법을 이용한 에스컬레이터의 진동 저감에 관한 연구)

  • Lim, Su-Young;Kwon, Yi-Sug;Park, Chan-Jong;Hong, Seong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.623-628
    • /
    • 2000
  • This paper deals with an analysis and reduction of escalator vibration by using the response surface model. Optimization of the escalator vibration is performed by minimization of the vibration responses which are measured at steps. The response surface models of the factors are constructed by using the experimental data based on the D optimal design method. The multi-objective optimization is also performed by applying desirability function and overlaid contour plot techniques. The optimal solution, which is obtained for a typical escalator system, is applied to reduce the escalator vibration.

  • PDF

Construction of Insulator and Isolator Database by Using Response Surface Model based on Taguchi's Orthogonal Array (다구찌 직교배열의 반응표면모델에 의한 흡차음재 소재 DB 구축)

  • Lee, Kwang-Ki;Kim, Byung-Hoon;Jun, In-Ki;Kang, Kyung-Soon;Kim, Ok-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.619-624
    • /
    • 2000
  • Design of experiments based on Taguchi's orthogonal array is utilized for exploring the design space and for building response surface models of insulator and isolator database in order to facilitate the effective solution of multi-objective optimization commonly occurred in NVH problems. Response surface models, called engineering database of design space, provide an efficient means to rapidly model the trade-off among many conflicting NVH goals in automotive. In the design of insulator and isolator in automotive interior part, it is important not only to construct effective matrices of NVH but also to build up engineering database of current products. The experimental design especially based on orthogonal array and the nonlinear optimization algorithms are successfully used together to obtain the optimal design of insulator and isolator. The $2^{nd}$ order response surface models of absorption coefficient and insertion loss are constructed by using modified Taguchi's $L_{12}2^13^7$ orthogonal array and successfully used in optimal design of insulator and isolator.

  • PDF

Optimal Design of Impeller Shroud for Centrifugal Compressor Using Response Surface Method (반응표면법을 이용한 원심압축기 임펠러 쉬라우드 형상최적설계)

  • Kang, Hyun-Su;Hwang, In-Ju;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method for optimal design of impeller shroud for centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was studied. Numerical simulation was conducted using ANSYS CFX with various configurations of shroud. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of DOE were used to find the optimal shape of impeller shroud for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Results showed that the isentropic efficiency, which is the main performance parameter of the centrifugal compressor, was increased 0.4% through the optimization.

Multi-Objective Optimal Design of a NEMA Design D Three-phase Induction Machine Utilizing Gaussian-MOPSO Algorithm

  • Zhang, Dianhai;Ren, Ziyan;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.184-189
    • /
    • 2014
  • This paper presents a multi-objective optimization approach to design rotor slot geometry of three-phase squirrel cage induction machine to achieve NEMA design D torque-speed (T-S) characteristics with high efficiency. The multi-objective Particle Swarm Optimization (MOPSO) algorithm combined with the adaptive response surface method and Latin hypercube sampling strategy is applied to obtain the Pareto optimal designs. In order to demonstrate the validity of the suggested optimal algorithm, an application to rotor slot design of three-phase induction motor is presented.