• Title/Summary/Keyword: Multi-Query

Search Result 253, Processing Time 0.023 seconds

Efficient Execution of Range $Top-\kappa$ Queries using a Hierarchical Max R-Tree (계층 최대 R-트리를 이용한 범위 상위-$\kappa$ 질의의 효율적인 수행)

  • 홍석진;이상준;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.132-139
    • /
    • 2004
  • A range $Top-\kappa$ query returns top k records in order of a measure attribute within a specified region on multi-dimensional data, and it is a powerful tool for analysis in spatial databases and data warehouse environments. In this paper, we propose an algorithm for answering the query via selective traverse of a Hierarchical Max R-Tree(HMR-tree). It is possible to execute the query by accessing only a small part of the leaf nodes in the query region, and the query performance is nearly constant regardless of the size of the query region. The algorithm manages the priority queue efficiently to reduce cost of handling the queue and the proposed HMR-tree can guarantee the same fan-out as the original R-tree.

Providing Approximate Answers Using a Knowledge Abstraction Hierarchy (지식 추상화 계층을 이용한 근사해 생성)

  • Huh, Soon-Young;Moon, Kae-Hyun
    • Asia pacific journal of information systems
    • /
    • v.8 no.1
    • /
    • pp.43-64
    • /
    • 1998
  • Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention to the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy(KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance, On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, four types of vague queries are discussed, including approximate selection, approximate join, conceptual selection, and conceptual join. A prototype system has been implemented at KAIST and is being tested with a personnel database system to demonstrate the usefulness and practicality of the knowledge abstraction database in ordinary database application systems.

  • PDF

Hilbert Cube for Spatio-Temporal Data Warehouses (시공간 데이타웨어하우스를 위한 힐버트큐브)

  • 최원익;이석호
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2003
  • Recently, there have been various research efforts to develop strategies for accelerating OLAP operations on huge amounts of spatio-temporal data. Most of the work is based on multi-tree structures which consist of a single R-tree variant for spatial dimension and numerous B-trees for temporal dimension. The multi~tree based frameworks, however, are hardly applicable to spatio-temporal OLAP in practice, due mainly to high management cost and low query efficiency. To overcome the limitations of such multi-tree based frameworks, we propose a new approach called Hilbert Cube(H-Cube), which employs fractals in order to impose a total-order on cells. In addition, the H-Cube takes advantage of the traditional Prefix-sum approach to improve Query efficiency significantly. The H-Cube partitions an embedding space into a set of cells which are clustered on disk by Hilbert ordering, and then composes a cube by arranging the grid cells in a chronological order. The H-Cube refines cells adaptively to handle regional data skew, which may change its locations over time. The H-Cube is an adaptive, total-ordered and prefix-summed cube for spatio-temporal data warehouses. Our approach focuses on indexing dynamic point objects in static spatial dimensions. Through the extensive performance studies, we observed that The H-Cube consumed at most 20% of the space required by multi-tree based frameworks, and achieved higher query performance compared with multi-tree structures.

Continuous Query Processing in Data Streams Using Duality of Data and Queries (데이타와 질의의 이원성을 이용한 데이타스트림에서의 연속질의 처리)

  • Lim Hyo-Sang;Lee Jae-Gil;Lee Min-Jae;Whang Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.310-326
    • /
    • 2006
  • In this paper, we deal with a method of efficiently processing continuous queries in a data stream environment. We classify previous query processing methods into two dual categories - data-initiative and query-initiative - depending on whether query processing is initiated by selecting a data element or a query. This classification stems from the fact that data and queries have been treated asymmetrically. For processing continuous queries, only data-initiative methods have traditionally been employed, and thus, the performance gain that could be obtained by query-initiative methods has been overlooked. To solve this problem, we focus on an observation that data and queries can be treated symmetrically. In this paper, we propose the duality model of data and queries and, based on this model, present a new viewpoint of transforming the continuous query processing problem to a multi-dimensional spatial join problem. We also present a continuous query processing algorithm based on spatial join, named Spatial Join CQ. Spatial Join CQ processes continuous queries by finding the pairs of overlapping regions from a set of data elements and a set of queries defined as regions in the multi-dimensional space. The algorithm achieves the effects of both of the two dual methods by using the spatial join, which is a symmetric operation. Experimental results show that the proposed algorithm outperforms earlier methods by up to 36 times for simple selection continuous queries and by up to 7 times for sliding window join continuous queries.

CMF-based Priority Processing Method for Multi-dimensional Data Skyline Query Processing in Sensor Networks (센서 네트워크에서 다차원 데이터 스카이라인 질의 처리를 위한 CMF 기반의 우선처리 기법)

  • Kim, Jin-Whan;Lee, Kwang-Mo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 2012
  • It has been studied to support data having multiple properties, called Skyline Query. The skyline query is not exploring data having all properties but only meaningful data, when we retrieve informations in large data base. The skyline query can be used to provide some information about various environments and situations in sensor network. However, the legacy skyline query has a problem that increases the number of comparisons as the number of sensors are increasing in multi-dimensional data. Also important values are often omitted. Therefore, we propose a new method to reduce the complexity of comparison where the large number of sensors are placed. To reduce the complexity, we transfer a CMF(Category Based Member Function) which can identify preference of specific data when interest query from sync-node is transferred to sub-node. To show the validity of our method, we analyzed the performance by simulations. As a result, it showed that the time complexity was reduced when we retrieved information in multiple sensing data and omitted values are detected by great dominance Skyline.

A Study of Efficient Access Method based upon the Spatial Locality of Multi-Dimensional Data

  • Yoon, Seong-young;Joo, In-hak;Choy, Yoon-chul
    • Proceedings of the Korea Database Society Conference
    • /
    • 1997.10a
    • /
    • pp.472-482
    • /
    • 1997
  • Multi-dimensional data play a crucial role in various fields, as like computer graphics, geographical information system, and multimedia applications. Indexing method fur multi-dimensional data Is a very Important factor in overall system performance. What is proposed in this paper is a new dynamic access method for spatial objects called HL-CIF(Hierarchically Layered Caltech Intermediate Form) tree which requires small amount of storage space and facilitates efficient query processing. HL-CIF tree is a combination of hierarchical management of spatial objects and CIF tree in which spatial objects and sub-regions are associated with representative points. HL-CIF tree adopts "centroid" of spatial objects as the representative point. By reflecting objects′sizes and positions in its structure, HL-CIF tree guarantees the high spatial locality of objects grouped in a sub-region rendering query processing more efficient.

  • PDF

Object-Based Image Search Using Color and Texture Homogeneous Regions (유사한 색상과 질감영역을 이용한 객체기반 영상검색)

  • 유헌우;장동식;서광규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • Object-based image retrieval method is addressed. A new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and texture features are extracted from each pixel in the image. These features we used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terns of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In retrieval case, two comparing schemes are proposed. Comparing between one query object and multi objects of a database image and comparing between multi query objects and multi objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into database.

A New RFID Multi-Tag recognition Algorithm using Collision-Bit (RFID 충돌 비트를 이용한 다중 태그 인식 알고리즘)

  • Ji, Yoo-Kang;Cho, Mi-Nam;Hong, Sung-Soo;Park, Soo-Bong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.55-58
    • /
    • 2008
  • RFID(Radio frequency IDentification) leader is collision of data, when recognizing the multiple tag the inside area. This collision became the cause which delays the tag recognition time of the leader. The protocol which prevents the delay of tag recognition time of the leader the place where representative it uses QT(Query Tree) algorithms, it uses a collision bit position from this paper and are improved QT-MTC(Query Tree with Multi-Tag Cognition) algorithms which it proposes. This algorithm stored the bit position which bit possibility and the collision where the collision happens occurs in the stack and goes round a tree the number of time which, it reduced could be identified two tags simultaneously in order, it was planned. A result of performance analysis, It compared in QT protocols and the this algorithm against the tag bit which is continued a tush efficiency improvement effect was visible.

  • PDF

A New RFID Multi-Tag recognition Algorithm using Collision-Bit (RFID 충돌 비트를 이용한 다중 태그 인식 알고리즘)

  • Ji, Yoo-Kang;Cho, Mi-Nam;Hong, Sung-Soo;Park, Soo-Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.999-1005
    • /
    • 2008
  • RFID(Radio Frequency IDintification) leader is collision of data, when recognizing the multiple tag the inside area. This collision became the cause which delays the tag recognition time of the leader. The protocol which prevents the delay of tag recognition time of the leader the place where representative it uses QT(Query Tree) algorithms, it uses a collision bit position from this paper and are improved QT-MTC(Query Tree with Multi-Tag Cognition) algorithms which it proposes. This algorithm stored the bit position which bit possibility and the collision where the collision happens occurs in the stack and goes round a tree the number of time which, it reduced could be identified two tags simultaneously in order, it was planned. A result of performance analysis, It compared in QT protocols and the this algorithm against the tag bit which is continued a high efficiency improvement effect was visible.

A Design of Model For Interoperability in Multi-Database based XMDR on Distributed Environments (분산환경에서 XMDR 기반의 멀티데이터 베이스 상호운영 모델 설계)

  • Jung, Kye-Dong;Hwang, Chi-Gon;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1771-1780
    • /
    • 2007
  • The necessity of Information integration has emphasized by advancement of internet and change of enterprise environment. In enterprises, it usually integrates the multi-database constructing by M&A. For this integration of information it must guarantee interpretation and integration which is stabilized with solving heterogeneous characteristic problem. In this paper, we propose the method that change the global XML query to local XML query for interpretation. It is based on XMDR(eXtended Meta-Data Registry) which expresses the connection between the standard and the local for solve the interoperability problem in heterogeneous environment. Thus, we propose the legacy model that can search and modify by one Query with creating global XML Query by XMDR. and for his, we use the 2PC technique which is the distributed transaction control technique of existing.