• Title/Summary/Keyword: Multi-Propagation

Search Result 684, Processing Time 0.436 seconds

A Study on Korean Printed Character Type Classification And Nonlinear Grapheme Segmentation (한글 인쇄체 문자의 형식 분류 및 비선형적 자소 분리에 관한 연구)

  • Park Yong-Min;Kim Do-Hyeon;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.784-787
    • /
    • 2006
  • In this paper, we propose a method for nonlinear grapheme segmentation in Korean printed character type classification. The characters are subdivided into six types based on character type information. The feature vector is consist of mesh features, vertical projection features and horizontal projection features which are extracted from gray-level images. We classify characters into 6 types using Back propagation. Character segmentation regions are determined based on character type information. Then, an optimal nonlinear grapheme segmentation path is found using multi-stage graph search algorithm. As the result, a proposed methodology is proper to classify character type and to find nonlinear char segmentation paths.

  • PDF

Sampling Error Variation due to Rainfall Seasonality

  • Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.7-14
    • /
    • 2001
  • In this study, we characterized the variation of sampling errors using the Waymire-Gupta-rodriguez-Iturbe multi-dimensional rainfall model (WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considering in this study are those far using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of mentally rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather norma1 to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain area than in the down stream plain area.

  • PDF

Optimization of Design Variables of a Train Suspension Using Neural Network Model (신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화)

  • 김영국;박찬경;황희수;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.

A Study on the Experimental Application of the Artificial Neural Network for the Process Improvement (공정개선을 위한 인공신경망의 실험적 적용에 관한 연구)

  • 한우철
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.174-183
    • /
    • 2002
  • In this paper a control chart pattern recognition methodology based on the back propagation algorithm and Multi layer perceptron, a neural computing theory, is presented. This pattern recognition algorithm, suitable for real time statistical process control. evaluates observations routinely collected for control charting to determine whether a Pattern, such as a cycle. trend or shift, which is exists in the data. This approach is promising because of its flexible training and high speed computation with low-end workstation. The artificial neural network methodology is developed utilizing the delta learning rule, sigmoid activation function with two hidden layers. In a computer integrated manufacturing environment, the operator need not routinely monitor the control chart but, rather, can be alerted to patterns by a computer signal generated by the proposed system.

  • PDF

SAT-Analyser Traceability Management Tool Support for DevOps

  • Rubasinghe, Iresha;Meedeniya, Dulani;Perera, Indika
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.972-988
    • /
    • 2021
  • At present, DevOps environments are getting popular in software organizations due to better collaboration and software productivity over traditional software process models. Software artefacts in DevOps environments are vulnerable to frequent changes at any phase of the software development life cycle that create a continuous integration continuous delivery pipeline. Therefore, software artefact traceability management is challenging in DevOps environments due to the continual artefact changes; often it makes the artefacts to be inconsistent. The existing software traceability related research shows limitations such as being limited to few types of artefacts, lack of automation and inability to cope with continuous integrations. This paper attempts to overcome those challenges by providing traceability support for heterogeneous artefacts in DevOps environments using a prototype named SAT-Analyser. The novel contribution of this work is the proposed traceability process model consists of artefact change detection, change impact analysis, and change propagation. Moreover, this tool provides multi-user accessibility and is integrated with a prominent DevOps tool stack to enable collaborations. The case study analysis has shown high accuracy in SAT-Analyser generated results and have obtained positive feedback from industry DevOps practitioners for its efficacy.

A study on development of simulation model of Underwater Acoustic Imaging (UAI) system with the inclusion of underwater propagation medium and stepped frequency beam-steering acoustic array

  • L.S. Praveen;Govind R. Kadambi;S. Malathi;Preetham Shankpal
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-224
    • /
    • 2023
  • This paper proposes a method for the acoustic imaging wherein the traditional requirement of the relative movement between the transmitter and target is overcome. This is facilitated through the beamforming acoustic array in the transmitter, in which the target is illuminated by the array at various azimuth and elevation angles without the physical movement of the acoustic array. The concept of beam steering of the acoustic array facilitates the formation of the beam at desired angular positions of azimuth and elevation angles. This paper substantiates that the combination of illumination of the target from different azimuth and elevation angles with respect to the transmitter (through the beam steering of beam forming acoustic array) and the beam steering at multiple frequencies (through SF) results in enhanced reconstruction of images of the target in the underwater scenario. This paper also demonstrates the possibility of reconstruction of the image of a target in underwater without invoking the traditional algorithms of Digital Image Processing (DIP). This paper comprehensively and succinctly presents all the empirical formulae required for modelling the acoustic medium and the target to facilitate the reader with a comprehensive summary document incorporating the various parameters of multi-disciplinary nature.

Floop: An efficient video coding flow for unmanned aerial vehicles

  • Yu Su;Qianqian Cheng;Shuijie Wang;Jian Zhou;Yuhe Qiu
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.615-626
    • /
    • 2023
  • Under limited transmission conditions, many factors affect the efficiency of video transmission. During the flight of an unmanned aerial vehicle (UAV), frequent network switching often occurs, and the channel transmission condition changes rapidly, resulting in low-video transmission efficiency. This paper presents an efficient video coding flow for UAVs working in the 5G nonstandalone network and proposes two bit controllers, including time and spatial bit controllers, in the flow. When the environment fluctuates significantly, the time bit controller adjusts the depth of the recursive codec to reduce the error propagation caused by excessive network inference. The spatial bit controller combines the spatial bit mask with the channel quality multiplier to adjust the bit allocation in space to allocate resources better and improve the efficiency of information carrying. In the spatial bit controller, a flexible mini graph is proposed to compute the channel quality multiplier. In this study, two bit controllers with end-to-end codec were combined, thereby constructing an efficient video coding flow. Many experiments have been performed in various environments. Concerning the multi-scale structural similarity index and peak signal-to-noise ratio, the performance of the coding flow is close to that of H.265 in the low bits per pixel area. With an increase in bits per pixel, the saturation bottleneck of the coding flow is at the same level as that of H.264.

Deep learning classification of transient noises using LIGOs auxiliary channel data

  • Oh, SangHoon;Kim, Whansun;Son, Edwin J.;Kim, Young-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.74.2-75
    • /
    • 2021
  • We demonstrate that a deep learning classifier that only uses to gravitational wave (GW) detectors auxiliary channel data can distinguish various types of non-Gaussian noise transients (glitches) with significant accuracy, i.e., ≳ 80%. The classifier is implemented using the multi-scale neural networks (MSNN) with PyTorch. The glitches appearing in the GW strain data have been one of the main obstacles that degrade the sensitivity of the gravitational detectors, consequently hindering the detection and parameterization of the GW signals. Numerous efforts have been devoted to tracking down their origins and to mitigating them. However, there remain many glitches of which origins are not unveiled. We apply the MSNN classifier to the auxiliary channel data corresponding to publicly available GravitySpy glitch samples of LIGO O1 run without using GW strain data. Investigation of the auxiliary channel data of the segments that coincide to the glitches in the GW strain channel is particularly useful for finding the noise sources, because they record physical and environmental conditions and the status of each part of the detector. By only using the auxiliary channel data, this classifier can provide us with the independent view on the data quality and potentially gives us hints to the origins of the glitches, when using the explainable AI technique such as Layer-wise Relevance Propagation or GradCAM.

  • PDF