• 제목/요약/키워드: Multi-Particle Finite Element Model

검색결과 12건 처리시간 0.095초

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구 (Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM)

  • 이경훈;이정민;김병민
    • 대한기계학회논문집A
    • /
    • 제34권4호
    • /
    • pp.383-390
    • /
    • 2010
  • 본 논문에서는 알루미늄 분말의 치밀화 거동을 분석하기 위하여 다입자유한요소모델을 이용한 분말압축 해석방법을 제시하였다. 다입자유한요소모델을 이용하여 압축공정 동안 압축속도와 입자크기가 입자의 변형거동과 분말의 치밀화에 미치는 영향을 조사하였다. 유한요소해석결과는 평균입도 20, $3{\mu}m$의 알루미늄 분말에 대한 일축압축시험을 통해 검증되었다. 압축시험은 만능재료시험기(MTS)를 이용하였으며 해석과 동일하게 5와 15, 30, 60mm/min 압축속도에 대해 수행되었다. 입자직경이 감소할수록 입자간 마찰이 증가하기 때문에 압출하중은 증가하였다. 압축속도가 감소할수록 증가된 입자의 회전모멘트는 입자간의 이동과 분말의 치밀화에 기여하여 최종 분말의 상대밀도를 증가시킨다.

시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석 (Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface)

  • 박태조;이준혁
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석) (Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis))

  • 정상철;금영탁
    • 한국결정성장학회지
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2005
  • 세라믹 분말 가압 성형 공정을 전산모사 하고 패킹의 임의성과 입자 배열의 효과를 평가하기 위해서 유사한 임의 다중 입자 배열을 사용하여 2차원 막대 배열 가압 성형 모델을 도입하였다. 3개의 Al₂O₃ 입자와 3개의 Al 입자를 가지고 기공과 관련된 가압 성형 공정을 균질화 탄성계수를 사용하여 외연적 유한요소 해석하였다. 해석 결과는 이전 해석 결과 및 실험 결과와 비교하였다. 마지막으로, 분말 입자의 마찰계수와 상대밀도의 관계를 얻기 위한 해석이 수행되었다.

Model updating and damage detection in multi-story shear frames using Salp Swarm Algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.63-73
    • /
    • 2019
  • This paper studies damage detection as an optimization problem. A new objective function based on changes in natural frequencies, and Natural Frequency Vector Assurance Criterion (NFVAC) was developed. Due to their easy and fast acquisition, natural frequencies were utilized to detect structural damages. Moreover, they are sensitive to stiffness reduction. The method presented here consists of two stages. Firstly, Finite Element Model (FEM) is updated. Secondly, damage severities and locations are determined. To minimize the proposed objective function, a new bio-inspired optimization algorithm called salp swarm was employed. Efficiency of the method presented here is validated by three experimental examples. The first example relates to three-story shear frame with two single damage cases in the first story. The second relates to a five-story shear frame with single and multiple damage cases in the first and third stories. The last one relates to a large-scale eight-story shear frame with minor damage case in the first and third stories. Moreover, the performance of Salp Swarm Algorithm (SSA) was compared with Particle Swarm Optimization (PSO). The results show that better accuracy is obtained using SSA than using PSO. The obtained results clearly indicate that the proposed method can be used to determine accurately and efficiently both damage location and severity in multi-story shear frames.

Sintering Multi-scale Virtual Reality

  • Olevsky, Eugene A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.264-265
    • /
    • 2006
  • The directions of further developments in the modeling of sintering are pointed out, including multi-scale modeling of sintering, on-line sintering damage criteria, particle agglomeration, sintering with phase transformations. A true multi-scale approach is applied for the development of a new meso-macro methodology for modeling of sintering. The developed macroscopic level computational framework envelopes the mesoscopic simulators. No closed forms of constitutive relationships are assumed for the parameters of the material. The model framework is able to predict the final dimensions of the sintered specimen on a global scale and identify the granular structure in any localized area for prediction of the material properties.

  • PDF

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

다목적 실용위성 2호 운송콘테이너의 동특성분석 (Analysis on the Dynamic Characteristics of KOMPSAT-2 Shipping Container)

  • 김홍배;우성현;문상무;이상설
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.535-540
    • /
    • 2002
  • A satellite shipping container must afford the satellite a relatively benign thermal, vibration, and particle environment that is oblivious to the extreme temperatures, sand, dust, vibrations, and shock that can accompany the transportation. Korea Aerospace Research Institute has developed a new shipping container system that will be used to transport KOMPSAT-2(Korea Multi-Purpose SATellite) from Tae-jon to launch site. To verify the dynamic characteristics, a Finite Element Analysis model and a 1/3 scaled mockup of the container were developed before the fabrication of real one. After fabrication of real shipping container, experimental modal analysis was peformed to identify the dynamic characteristics. This paper presents a series of development process of KOMPSAT-2 shipping container.

  • PDF

ER 유체의 채널유동에 대한 직접수치해석 (Direct Numerical Simulation of an Electro-Rheological Channel Flow)

  • 조상호;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.72-80
    • /
    • 2004
  • Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.