• Title/Summary/Keyword: Multi-Objective function

Search Result 445, Processing Time 0.035 seconds

A Combined Approach of Pricing and (S-1, S) Inventory Policy in a Two-Echelon Supply Chain with Lost Sales Allowed (다단계 SCM 환경에서 품절을 고려한 최적의 제품가격 및 재고정책 결정)

  • Sung, Chang Sup;Park, Sun Hoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.2
    • /
    • pp.146-158
    • /
    • 2004
  • This paper considers a continuous-review two-echelon inventory control problem with one-to-one replenishment policy incorporated and with lost sales allowed where demand arrives in a stationary Poisson process. The problem is formulated using METRIC-approximation in a combined approach of pricing and (S-l, S) inventory policy, for which a heuristic solution algorithm is derived with respect to the corresponding one-warehouse multi-retailer supply chain. Specifically, decisions on retail pricing and warehouse inventory policies are made in integration to maximize total profit in the supply chain. The objective function of the model consists of sub-functions of revenue and cost (holding cost and penalty cost). To test the effectiveness and efficiency of the proposed algorithm, numerical experiments are performed with two cases. The first case deals with identical retailers and the second case deals with different retailers with different market sizes. The computational results show that the proposed algorithm is efficient and derives quite good decisions.

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (II) -Formulation and Synthesis of Integrated Design- (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (II) -통합설계의 정식화와 해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1038-1046
    • /
    • 2004
  • In order to acquire high-speed and high-precision performances in servomechanisms, an integrated design method have been proposed. Based on strict mathematical modeling and analysis of system performance according to design and operating parameters, a nonlinear constrained optimization problem including the relevant subsystem parameters of the servomechanism is formulated. Optimum design results of mechanical and electrical parameters are obtained according to the design parameters specified by designers through the integrated design processes. Motors are optimally selected from the servo motor database. Both the geometric errors referring to Abbe offset and the contour errors are minimized while required constraints such as stability conditions and saturated conditions are satisfied. This design methodology both offers the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism and improves the quality of the design process to achieve the required performance for high-speed/precision servomechanisms.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.

Simultaneous Optimization of Structure and Control Systems Based on Convex Optimization - An approximate Approach - (볼록최적화에 의거한 구조계와 제어계의 동시최적화 - 근사적 어프로치 -)

  • Son, Hoe-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1353-1362
    • /
    • 2003
  • This paper considers a simultaneous optimization problem of structure and control systems. The problem is generally formulated as a non-convex optimization problem for the design parameters of mechanical structure and controller. Therefore, it is not easy to obtain the global solutions for practical problems. In this paper, we parameterize all design parameters of the mechanical structure such that the parameters work in the control system as decentralized static output feedback gains. Using this parameterization, we have formulated a simultaneous optimization problem in which the design specification is defined by the Η$_2$and Η$\_$$\infty$/ norms of the closed loop transfer function. So as to lead to a convex problem we approximate the nonlinear terms of design parameters to the linear terms. Then, we propose a convex optimization method that is based on linear matrix inequality (LMI). Using this method, we can surely obtain suboptimal solution for the design specification. A numerical example is given to illustrate the effectiveness of the proposed method.

Assessment of the ATC Effect for Paddy Field and Forest Using Landsat Images and In-situ Measurement (Landsat영상과 현지조사에 의한 여름철 논과 산림의 기온저감효과 평가)

  • Park, Jong-Hwa;Na, Sang-Il;Kim, Jin-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1943-1947
    • /
    • 2007
  • The objective of this research was to find a direct and indirect method to estimate land surface temperature (LST) efficiently, using Landsat images and in-situ measurement. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect are widely acknowledged. However, quantitative and regional assessment of such effect has not had many investigations. Thermal remote sensing has been used over urban areas to assess ATC effect, to perform land cover classifications and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $441km^2$ study area in Cheongju, Korea. The results show that the ATC are a function of paddy area percentage in Landsat pixels. Pixels with higher paddy area percentage have more significant cooling effect.

  • PDF

Analysis of the Relationship Between Land Cover and Land Surface Temperature at Cheongju Region Using Landsat Images in Summer Day (LANDSAT영상을 이용한 여름철 청주지역의 토지피복과 지표면온도와의 관계 분석)

  • Park, Jong-Hwa;Kim, Jin-Soo;Na, Sang-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.39-48
    • /
    • 2006
  • The objective of this research was to find an indirect method to estimate land surface temperature (LST) efficiently, using Landsat images. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect is widely acknowledged. However, quantitative and regional assessment of such effect has not been performed. Thermal remote sensing has been used over urban areas to assess the ATC effect, Thermal Island Effect(TIE), and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $44km^{2}$ study area in Cheongiu, Korea. The results show that the ATC is a function of paddy area percentage in Landsat pixels. Landsat pixels with higher paddy area percentage have much more cooling effect. The use of satellite data may contribute to a globally consistent method for analysis of ATC effect.

A Study on Dynamic Response Optimization of a Tracked Vehicle (궤도차량의 동적반응 최적설계에 관한 연구)

  • Kim, Y.H.;Kim, M.S.;Choi, D.H.;U, H.H.;Kim, J.S.;Kim, J.H.;Suh, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.16-29
    • /
    • 1995
  • In this study a tracked vehicle is idealized as a 2-dimensional 9-degrees-of-freedom model which takes into account the effects of HSU units, torsion bars, and track. For the model equations of motion are derived using Kane's method. By using the equations of motion, a numerical example is solved and results are compared to those obtained by using a general purpose multi body dynamic analysis program. The comparison study shows the reasonable coherence between the two results. which confirms the effectiveness of the model. With the model, dynamic response optimization is carried out. The objective function is the peak value of the vertical acceleration of the vehicle at the driver's seat, and the constraints are the wheel travel limits, the ground clearance. and the limits of other design variables. Three different sets of design variables are chosen and used for the optimization. The results show the attenuation of the acceleration peak value. Thus the procedure presented in this study can be utilized for the design improvement of the real system.

  • PDF

Bow hull-form optimization in waves of a 66,000 DWT bulk carrier

  • Yu, Jin-Won;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.499-508
    • /
    • 2017
  • This paper uses optimization techniques to obtain bow hull form of a 66,000 DWT bulk carrier in calm water and in waves. Parametric modification functions of SAC and section shape of DLWL are used for hull form variation. Multi-objective functions are applied to minimize the wave-making resistance in calm water and added resistance in regular head wave of ${\lambda}/L=0.5$. WAVIS version 1.3 is used to obtain wave-making resistance. The modified Fujii and Takahashi's formula is applied to obtain the added resistance in short wave. The PSO algorithm is employed for the optimization technique. The resistance and motion characteristics in calm water and regular and irregular head waves of the three hull forms are compared. It has been shown that the optimal brings 13.2% reduction in the wave-making resistance and 13.8% reduction in the added resistance at ${\lambda}/L=0.5$; and the mean added resistance reduces by 9.5% at sea state 5.