References
- Bagheri, H., Ghassemi, H., Dehghanian, A., 2014. Optimizing the seakeeping performance of ship hull forms using genetic algorithm. Int. J. Mar. Navigation Soc. Sea Transp. 8 (1), 49-57. https://doi.org/10.12716/1001.08.01.06
- Berg, T.E., Berge, B.O., Honninen, S., Suojanen, R.A., Borgen, H., 2011. Design considerations for an arctic intervention vessel. In: Proceedings of Arctic Technology Conference. Houston, Texas, USA.
- Blok, J.J., 1983. The Resistance Increase of a Ship in Waves. PhD thesis. Delft University ofTechnology.
- Buchner, B., 1996. The influence of the bow shape of FPSOs on drift forces and green water. In: Proceedings of the Offshore Technology Conference, No. 8073, Houston, Texas, 6-9 May, 1996.
- Campana, E.F., Liuzzi, G., Lucidi, S., Peri, D., Piccialli, V., Pinto, A., 2009. New global optimization methods for ship design problems. Optim. Eng. 10, 533-555. https://doi.org/10.1007/s11081-009-9085-3
- Chun, H.H., 1992. On the added resistance of SWATH ship in waves. J. Soc. Nav. Archit. Korea 29 (4), 75-86 [in Korean].
- Ebira, K., Iwasaki, Y., Komura, A., 2004. Development of a new stem to increase the propulsive performance of LPG carriers. J. Kansai Soc. Nav. Archit. 241, 25-32 [in Japanese].
- Fang, M.C., Lee, Z.Y., Huang, K.T., 2013. A simple alternative approach to assess the effect of the above-water bow form on the ship added resistance. Ocean. Eng. 57, 34-48. https://doi.org/10.1016/j.oceaneng.2012.09.005
- Gerritsma, J., Beukelman, W., 1972. Analysis of the resistance increase in waves of a fast cargo ship. Int. Shipbuild. Prog. 19, 285-293. https://doi.org/10.3233/ISP-1972-1921701
- Grigoropoulos, G.J., Chalkias, D.S., 2010. Hull-form optimization in calm and rough water. J. Computer-Aided Des. 42 (11), 977-984. https://doi.org/10.1016/j.cad.2009.11.004
- Guo, B., Steen, S., 2011. Evaluation of added resistance of KVLCC2 in short waves. J. Hydrodyn. 23 (6), 709-722. https://doi.org/10.1016/S1001-6058(10)60168-0
- Hirota, K., Matsumoto, K., Takagishi, K., Yamasaki, K., Orihara, H., Yoshida, H., 2005. Development of bow shape to reduce the added resistance due to waves and verification of full scale measurement. In: Proceedings of the First International Conference on Marine Research and Transportation (ICMRT05), Ischia, Italy, September 19-21, 2005, pp. 63-70.
- Hwang, S.H., Kim, J., Lee, Y.Y., Ahn, H.S., Van, S.H., Kim, K.S., 2013. Experimental study on the effect of bow hull forms to added resistance in regular head waves. In: Proceedings of the 12th International Symposium on Practical Design of Ships and Other Floating Structures(PRADS 2013), Changwon, Korea, October 20-25, pp. 39-44.
- Hwang, S.H., Ahn, H.S., Lee, Y.Y., Kim, M.S., Van, S.H., Kim, K.S., Kim, J., Jang, Y.H., 2016. Experimental study on the bow hull-form modification for added resistance reduction in waves of KVLCC2. In: Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, June 26-July 1, pp. 864-868.
- Jeong, K.L., Lee, Y.G., Yu, J.W., 2013. A fundamental study on the reduction of added resistance for KCS. In: Proceedings of the 12th International Symposium on Practical Design of Ships and Other Floating Structures( PRADS 2013), Changwon, Korea, October 20-25, pp. 23-30.
- Kihara, H., Naito, S., Sueyoshi, M., 2005. Numerical analysis of the influence of above-water bow form on added resistance using nonlinear slender body theory. J. Ship Res. 49 (3), 191-206.
- Kim, D.H., Kim, W.J., Van, S.H., 2000. Analysis of the nonlinear wavemaking problem of practical hull form using panel method. J. Soc. Nav. Archit. Korea 37 (4), 1-10 [in Korean].
- Kim, D.H., Kim, W.J., Van, S.H., Kim, H., 1998. Nonlinear potential flow calculation for the wave pattern of practical hull forms. In: Proceedings of the Third International Conference on Hydrodynamics (ICHD1998), Seoul, Korea.
- Kim, H.J., Choi, J.E., Chun, H.H., 2016. Hull-form optimization using parametric modification functions and particle swarm optimization. J. Mar. Sci. Technol. 21, 129-144. https://doi.org/10.1007/s00773-015-0337-y
- Kim, H.Y., Yang, C., Noblesse, F., 2010. Hull form optimization for reduced resistance and improved seakeeping via practical designed-oriented CFD tools. In: Proceedings of the Grand Challenges in Modeling & Simulation (GCMS'10), Ottawa, Canada, pp. 375-385.
- Kuroda, M., Tsujimoto, M., Fujiwara, T., Ohmatsu, S., Takagi, K., 2008. Investigation on components of added resistance in short waves. J. Jpn. Soc. Nav. Archit. Ocean Eng. 8, 171-176.
- Kuroda, M., Tsujimoto, M., Sasaki, N., Ohmatsu, S., Takagi, K., 2012. Study on the bow shapes above the waterline in view of the powering and greenhouse gas emission in actual seas. J. Eng. Marit. Environ. 226 (1), 23-35.
- Matsumoto, K., Hirota, K., Takagishi, K., 2000. Development of energy saving shape at sea. In: Proceedings of the 4th Osaka Colloquium on Seakeeping Performance of Ships, Osaka, Japan, 17-21 October, 2000, pp. 479-485.
- Matsumoto, K., 2002. "Ax-Bow": a new energy-saving bow shape at sea. NKK Tech. Rev. 86, 46-47.
- Orihara, H., Miyata, H., 2003. Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using an overlapping grid system. J. Mar. Sci. Technol. 8, 47-60. https://doi.org/10.1007/s00773-003-0163-5
- Park, J.H., Choi, J.E., Chun, H.H., 2015. Hull-form optimization of KSUEZMAX to enhance resistance performance. Int. J. Nav. Archit. Ocean Eng. 7 (1), 100-114. https://doi.org/10.1515/ijnaoe-2015-0008
- Pinto, A., Peri, D., Campana, E.F., 2007. Multiobjective Optimization of a Containership Using Deterministic Particle Swarm Optimization. J. Ship Res. 51 (3), 217-228.
- Sadat-Hosseini, H., Wu, P.C., Carrica, O.M., Toda, Y., Stern, F., 2013. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean. Eng. 59, 240-273. https://doi.org/10.1016/j.oceaneng.2012.12.016
- Seo, M.G., Park, D.M., Yang, K.K., Kim, Y., 2013. Comparative study on computation of ship added resistance in waves. Ocean. Eng. 73, 1-15. https://doi.org/10.1016/j.oceaneng.2013.07.008
- Strom-Tejsen, J., Yeh, H.Y.H., Moran, D.D., 1973. Added resistance in waves. Soc. Nav. Archit. Mar. Eng. 81, 109-143.
- Tahara, Y., Peri, D., Campana, E.F., Stern, F., 2008. Computational fluid dynamics-based multiobjective optimization of a surface combatant using a global optimization method. J. Mar. Sci. Technol. 13 (2), 95-116. https://doi.org/10.1007/s00773-007-0264-7
- Tsujimoto, M., Shibata, K., Kuroda, M., Takagi, K., 2008. A practical correction method for added resistance in waves. J. Jpn. Soc. Nav. Archit. Ocean Eng. 8, 177-184.
- Tvete, M.R., Borgen, H., 2012. A Ship's Fore Body Form. PCT/NO2010/000030.
- Ulstein Group, 2008. Homepage Ulstein Group. https://ulstein.com/innovations/x-bow.
Cited by
- Influence of hull entrance angle “Perintis 750 DWT”, toward ship resistance: the case study for design development “Perintis 750 DWT.” vol.159, pp.None, 2018, https://doi.org/10.1051/matecconf/201815901057
- Effect of bow hull forms on the resistance performance in calm water and waves for 66k DWT bulk carrier vol.11, pp.2, 2019, https://doi.org/10.1016/j.ijnaoe.2019.02.007
- Effects of diffraction in regular head waves on added resistance and wake using CFD vol.11, pp.2, 2019, https://doi.org/10.1016/j.ijnaoe.2019.02.013
- Hydrodynamic optimisation of a multi-purpose wind offshore supply vessel vol.67, pp.2, 2017, https://doi.org/10.1080/09377255.2019.1602976
- Toward More Sustainable River Transportation in Remote Regions of the Amazon, Brazil vol.11, pp.5, 2017, https://doi.org/10.3390/app11052077
- Study on Hull Optimization Process Considering Operational Efficiency in Waves vol.9, pp.5, 2017, https://doi.org/10.3390/pr9050898
- Computational Fluid Dynamics Applied to River Boat Hull Optimization vol.55, pp.5, 2017, https://doi.org/10.4031/mtsj.55.5.9
- Comparative study on analysis methods for added resistance of four ships in head and oblique waves vol.236, pp.None, 2021, https://doi.org/10.1016/j.oceaneng.2021.109552
- Resistance and wake distortion optimization of JBC considering ship-propeller interaction vol.244, pp.None, 2017, https://doi.org/10.1016/j.oceaneng.2021.110376