• Title/Summary/Keyword: Multi-Objective Function

검색결과 447건 처리시간 0.023초

컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 - (Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect)

  • 이충용;민승재;유정훈
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계 (Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method)

  • 이준배;이병채
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

자원 재배치를 위한 차량 경로계획의 다목적 최적화 (Multi-objective Optimization of Vehicle Routing with Resource Repositioning)

  • 강재구;임동순
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.

다단 기어장치의 설계법(체적 감소 및 신뢰성 향상) (Design Method of Multi-Stage Gear Drive (Volume Minimization and Reliability Improvement))

  • 박재희;이정상;정태형
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is focused on the optimum design for decreasing volume and increasing reliability of multi-stage gear drive. For the optimization on volume and reliability, multi-objective optimization is used. The genetic algorithm is introduced to multi-objective optimization method and it is used to develop the optimum design program using exterior penalty function method to solve the complicated subject conditions. A 5 staged gear drive(geared motor) is chosen to compare the result of developed optimum design method with the existing design. Each of the volume objective, reliability objective, and volume-reliability multi-objectives are performed and compared with existing design. As a result, optimum solutions are produced, which decrease volume and increase reliability. It is shown that the developed design method is good for multi-stage gear drive design.

Multi-Objective Optimization Using Kriging Model and Data Mining

  • Jeong, Shin-Kyu;Obayashi, Shigeru
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, a surrogate model is applied to multi-objective aerodynamic optimization design. For the balanced exploration and exploitation, each objective function is converted into the Expected Improvement (EI) and this value is used as fitness value in the multi-objective optimization instead of the objective function itself. Among the non-dominated solutions about EIs, additional sample points for the update of the Kriging model are selected. The present method was applied to a transonic airfoil design. Design results showed the validity of the present method. In order to obtain the information about design space, two data mining techniques are applied to design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • 제5권2호
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

다목적함수를 이용한 PDM 모형의 유량 분석 (Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function)

  • 안상억;이효상;전민우
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.93-102
    • /
    • 2009
  • 본 연구는 미호천 유역을 대상으로 유량곡선의 세부적인 특성을 고려한 다목적함수를 적용하여 Probability Distribution Model(PDM) 모형의 유량모의성능을 검토하였다. PDM은 유역을 한 개의 단위구역으로 개념화한 집중형 강우유출모형으로 영국의 지역화 연구 및 홍수량 산정방법에 대표적으로 이용되고 있다. PDM 모형의 5개 매개변수를 Monte Carlo 방법에 기반을 둔 분석도구(MCAT, Monte Carlo Analysis Toolkit)를 활용하여 사후검정분포, 검정근거 및 민감도 분석 등을 수행하였으며, 모형의 매개변수 중 cmax와 k(q)만이 뚜렷한 검정 근거가 있고 나머지 변수들은 동등성의 영향을 확인하였다. 또한, 유량곡선의 고유량 및 저유량의 특성을 맞춘 목적함수의 Trade-off를 고려한 매개변수의 파레토 최적해를 산정한 결과, 모든 목적에 최대한 부합하는 유량 산정의 가능성을 제시하였다. 검정(calibration)기간에서 NS*E=0.035, FSB=0.161, FDBH= 0.809로 안정적이며 만족할만한 모의성능을 나타내었고, 검증(validation)기간에 대해서도 안정적인 모의성능을 나타내었다.