• Title/Summary/Keyword: Multi-Objective Design

Search Result 730, Processing Time 0.025 seconds

Fuzzy Control Algorithm for Multi-Objective Problems using Orthogonal Array and its Application to an AMB System (직교배열표를 이용한 다목적 퍼지제어 알고리즘 및 능동자기베어링 시스템에의 응용)

  • Kim, Choo-Ho;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.449-454
    • /
    • 2000
  • A new fuzzy logic control design algorithm suitable for multi-objective control problems is proposed based on the orthogonal array which is widely used for design of experiments in statistics and industrial engineering. The essence of the algorithm is to introduce Nth-certainty factor defined from the F-value of the ANOVA(analysis of variance) table, in order to effectively exclude the less confident rules. The proposed algorithm with multi-objective decision table(MODT) is found to be capable of the detection of inconsistency and the rule classification, reduction and modification. It is also shown that the algorithm can be successfully applied to the fuzzy controller design of an active magnetic bearing system.

  • PDF

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.

Fuzzy programming for improving redundancy-reliability allocation problems in series-parallel systems

  • Liu, C.M.;Li, J.L.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-94
    • /
    • 2011
  • Redundancy-reliability allocation problems in multi-stage series-parallel systems are addressed in this study. Fuzzy programming techniques are proposed for finding satisfactory solutions. First, a multi-objective programming model is formulated for simultaneously maximizing system reliability and minimizing system total cost. Due to the nature of uncertainty in the problem, the fuzzy set theory and technique are used to convert the deterministic multi-objective programming model into a fuzzy nonlinear programming problem. A heuristic method is developed to get satisfactory solutions for the fuzzy nonlinear programming problem. A Pareto optimal solution is found with maximal degree of satisfaction from the interception area of fuzzy sets. A case study that is related to the electronic control unit installed on aircraft engine over-speed protection system is used to implement the developed approach. Results suggest that the developed fuzzy multi-objective programming model can effectively resolve the fuzzy and uncertain problem when design goals and constraints are not clearly confirmed at the initial conceptual design phase.

  • PDF

Automated Mold Design to Optimize Multi-Quality Characteristics in Injection Molded Parts Based on the Utility Theory and Modified Complex Method (효용이론과 수정콤플렉스법에 기초한 사출 성형품의 다특성 최적화를 위한 자동 금형 설계)

  • Park, Byung-H
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.210-221
    • /
    • 2000
  • Plastic mold designers and frequently faced with optimizing multi-quality issues in injection molded parts. These issues are usually in conflict with each other and thus tradeoff needs to be made to reach a final compromised solution. in this study an automated injection molding design methodology has been developed to optimize multi-quality characteristics of injection molded parts. The features of the proposed methodology are as follows : first utility theory is applied to transform the original multi-objective problem into single-objective problem. Second is an implementation of a direct search-based injection molding optimization procedure with automated consideration of robustness against process variation. The modified complex method is used as a general optimization tool in this study. The developed methodology was applied to an actual mold design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Optimum multi-objective modified step-stress accelerated life test plan for the Burr type-XII distribution

  • Srivastava, P.W.;Mittal, N.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.23-50
    • /
    • 2014
  • This paper deals with formulation of optimum multi-objective modified step-stress accelerated life test (ALT) plan for Burr type-XII distribution under type-I censoring. Since it is impractical to estimate only one objective parameter after conducting costly ALT tests; also, it is not desirable to assume instantaneous changes in stress levels because of limited capacity of test equipments and the presence of undesirable failure modes, therefore, an optimum multi-objective modified step-stress ALT plan has been designed. The optimal test plan consists in determining the optimum low stress level and optimal time at which stress starts linearly increasing from low stress by minimizing the weighted sum of the asymptotic variances of the maximum likelihood estimator of quantile lifetimes at design constant stress. The method developed has been illustrated using an example. Sensitivity analysis has been carried out. Comparative study has also been done to highlight the merits of the proposed model.

  • PDF

Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm

  • Xu, Le;You, Jiaxin;Yu, Haidan;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.660-665
    • /
    • 2016
  • The electromagnetic apparatus plays an important role in high power electrical systems. It is of great importance to provide an effective approach for the optimization of the high power electromagnetic apparatus. However, premature convergence and few Pareto solution set of the optimization for electromagnetic apparatus always happen. This paper proposed a modified multi-objective particle swarm optimization algorithm based on the niche sorting strategy. Applying to the modified algorithm, this paper guarantee the better Pareto optimal front with an enhanced distribution. Aiming at shortcomings in the closing bounce and slow breaking velocity of electromagnetic apparatus, the multi-objective optimization model was established on the basis of the traditional optimization. Besides, by means of the improved multi-objective particle swarm optimization algorithm, this paper processed the model and obtained a series of optimized parameters (decision variables). Compared with other different classical algorithms, the modified algorithm has a satisfactory performance in the multi-objective optimization problems in the electromagnetic apparatus.