• Title/Summary/Keyword: Multi-Objective Design

Search Result 730, Processing Time 0.026 seconds

Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method (반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

Applying Multi-objective Mathematical Programming Model for Business Planning of Eco-friendly Agrifood Processing Enterprise in Korea (친환경농식품 가공업체의 경영계획 수립을 위한 다목표 수리계획모형의 적용 방안)

  • Cho, Wan-Hyung
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.181-202
    • /
    • 2018
  • Most of eco-friendly agrifood processing enterprises in Korean rural area are small and medium-sized business. For this reason, it's hard for eco-friendly agrifood processing enterprises to neither analyze business performance for efficient business management nor establish their own business plan for rational decision-making. Therefore it's necessary to design effective mathematical programming model and to make practical application which can support rational management decision-making ensuring the stable business activity of eco-friendly agrifood processing enterprises. Accordingly this paper focuses on the designing and its application of multi-objective mathematical programming model using goal programming to support rational decision-making of eco-friendly agrifood processing enterprise. Hansalimanseongmachum Food Inc. which runs soy bean processing business making tofu based on regional-based soybean farms around Anseong City will be the specific case to apply multi-objective mathematical programming model in practice. And it will suggest measures to support rational management decision-making of other eco-friendly agrifood processing enterprises.

Internet Shopping Optimization Problem With Delivery Constraints

  • Chung, Ji-Bok
    • Journal of Distribution Science
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2017
  • Purpose - This paper aims to suggest a delivery constrained internet shopping optimization problem (DISOP) which must be solved for online recommendation system to provide a customized service considering cost and delivery conditions at the same time. Research design, data, and methodology - To solve a (DISOP), we propose a multi-objective formulation and a solution approach. By using a commercial optimization software (LINDO), a (DISOP) can be solved iteratively and a pareto optimal set can be calculated for real-sized problem. Results - We propose a new research problem which is different with internet shopping optimization problem since our problem considers not only the purchasing cost but also delivery conditions at the same time. Furthermore, we suggest a multi-objective mathematical formulation for our research problem and provide a solution approach to get a pareto optimal set by using numerical example. Conclusions - This paper proposes a multi-objective optimization problem to solve internet shopping optimization problem with delivery constraint and a solution approach to get a pareto optimal set. The results of research will contribute to develop a customized comparison and recommendation system to help more easy and smart online shopping service.

Fuzzy Preference Based Interactive Fuzzy Physical Programming and Its Application in Multi-objective Optimization

  • Zhang Xu;Huang Hong-Zhong;Yu Lanfeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.731-737
    • /
    • 2006
  • Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer.

2-D Robust Design Optimization on Unstructured Meshes

  • Lee Sang Wook;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.240-242
    • /
    • 2003
  • A method for performing two-dimensional lift-constraint drag minimization in inviscid compressible flows on unstructured meshes is developed. Sensitivities of objective function with respect to the design variables are efficiently obtained by using a continuous adjoint method. In addition, parallel algorithm is used in multi-point design optimization to enhance the computational efficiency. The characteristics of single-point and multi-point optimization are examined, and the comparison of these two method is presented.

  • PDF

Systematic probabilistic design methodology for simultaneously optimizing the ship hull-propeller system

  • Esmailian, Ehsan;Ghassemi, Hassan;Zakerdoost, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.246-255
    • /
    • 2017
  • The proposed design methodology represents a new approach to optimize the propeller-hull system simultaneously. In this paper, two objective functions are considered, the first objective function is Lifetime Fuel Consumption (LFC) and the other one is cost function including thrust, torque, open water and skew efficiencies. The variables of the propeller geometries (Z, EAR, P/D and D) and ship hull parameters (L/B, B/T, T and $C_B$) are considered to be optimized with cavitation, blades stress of propeller. The well-known evolutionary algorithm based on NSGA-II is employed to optimize a multi-objective problem, where the main propeller and hull dimensions are considered as design variables. The results are presented for a series 60 ship with B-series propeller. The results showed that the proposed method is an appropriate and effective approach for simultaneously propeller-hull system design and is able to minimize both of the objective functions significantly.

Multi-Objective Design Exploration and its Applications

  • Obayashi, Shigeru;Jeong, Shin-Kyu;Shimoyama, Koji;Chiba, Kazuhisa;Morino, Hiroyuki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.247-265
    • /
    • 2010
  • Multi-objective design exploration (MODE) and its applications are reviewed as an attempt to utilize numerical simulation in aerospace engineering design. MODE reveals the structure of the design space based on trade-off information. A self-organizing map (SOM) is incorporated into MODE as a visual data mining tool for the design space. SOM divides the design space into clusters with specific design features. This article reviews existing visual data mining techniques applied to engineering problems. Then, we discuss three applications of MODE: multidisciplinary design optimization for a regional-jet wing, silent supersonic technology demonstrator and centrifugal diffusers.

Multi-objective Optimization of an Injection Mold Cooling Circuit for Uniform Cooling (사출금형의 균일 냉각을 위한 냉각회로의 다중목적함수 최적설계)

  • Park, Chang-Hyun;Park, Jung-Min;Choi, Jae-Hyuk;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.124-130
    • /
    • 2012
  • An injection mold cooling circuit for an automotive front bumper was optimally designed in order to simultaneously minimize the average of the standard deviations of the temperature and the difference in mean temperatures of the upper and lower molds for uniform cooling. The temperature distribution for a specified design was evaluated by Moldflow Insight 2010, a commercial injection molding analysis tool. For efficient design, PIAnO (Process Integration, Automation and Optimization), a commercial PIDO tool, was used to integrate and automate injection molding analysis procedure. The weighted-sum method was used to handle the multi-objective optimization problem and PQRSM, a function-based sequential approximate optimizer equipped in PIAnO, to handle numerically noisy responses with respect to the variation of design variables. The optimal average of the standard deviations and difference in mean temperatures were found to be reduced by 9.2% and 56.52%, respectively, compared to the initial ones.

Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II (근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계)

  • Yun, Minro;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties (동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF